
ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 2, Issue 2, (Jul-Dec) 2025

Serverless Architecture: For Deploying
Web Application Using Cloud Services

Ayushi Agrawal
Dept. of CSIT

Acropolis Institute of Technology and Research
Indore, India

ayushiagrawal221015@acropolis.in

Janvi Garg
Dept. of CSIT

Acropolis Institute of Technology and Research
Indore, India

janvigarg210056@acropolis.in

Pooja Katre
Dept. of CSIT

Acropolis Institute of Technology and Research
Indore, India

poojakatre210245@acropolis.in,

Nidhi Nigam
Dept. of CSIT

Acropolis Institute of Technology and Research
Indore, India

nidhinigam@acropolis.in

Chanchal Bansal
Dept. of CSIT

Acropolis Institute of Technology and Research
Indore, India

chanchalbansal@acropolis.in

Abstract—- This paper introduces a serverless ar-
chitecture designed to enhance efficiency and sustain-
ability by addressing the limitations of traditional
server systems, where resources often remain under-
utilized while still consuming energy. The serverless
model dynamically manages resources based on real-
time demand, activating servers only as needed and
reducing energy consumption during low usage pe-
riods. Dynamic resource allocation scales resources
up or down automatically, eliminating the need for
continuously running servers. The event-driven nature
of serverless computing ensures resource utilization
only in response to specific triggers, such as HTTP
requests or database updates, enhancing responsive-
ness and efficiency.[5] The architecture integrates
Continuous Integration and Continuous Deployment
(CI/CD) pipelines to streamline development, testing,
and deployment processes, ensuring rapid delivery of
updates and maintaining system reliability. A pay-
as-you-go cost structure reduces operational expenses
by charging businesses solely for the compute time
and memory utilized, while also minimizing carbon
emissions. Overall, this serverless architecture, com-

bined with CI/CD automation, offers a scalable, cost-
effective, and environmentally responsible solution
aligned with modern energy-efficient and agile devel-
opment practices. This paper highlights the design and
impact of a serverless architecture, emphasizing its ef-
ficiency, scalability, and sustainability. By dynamically
managing resources and integrating CI/CD pipelines,
it reduces costs, optimizes energy use, and enhances
system reliability. These insights provide a foundation
for future advancements in serverless computing.

Index Terms—Serverless architecture, Resource al-
location (Dynamic), Energy efficiency / Sustainability,
CI/CD pipelines, Event-driven computing.

I. INTRODUCTION

In the rapidly evolving digital landscape, tradi-
tional server-based architectures often face signifi-
cant challenges related to scalability, cost efficiency,
and resource optimization. These conventional sys-
tems require continuous server maintenance, even
during periods of low activity, leading to unneces-

57

ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 2, Issue 2, (Jul-Dec) 2025

sary energy consumption and increased operational
expenses. Additionally, managing and provision-
ing dedicated servers to accommodate fluctuating
workloads can be complex and inefficient, making
it difficult for businesses to achieve optimal per-
formance without over spending on infrastructure.
Serverless architecture presents a transformative
solution by dynamically allocating resources based
on real-time demand. Unlike traditional systems,
where servers run continuously, serverless comput-
ing activates computing power. and cost-effective
computing model.

Moreover, integrating Continuous Integration and
Continuous Deployment (CI/CD) pipelines within
a serverless framework streamlines the develop-
ment lifecycle by automating testing, deployment,
and updates. This ensures faster release cycles,
improved software reliability, and reduced down-
time, making serverless architecture an attractive
choice for modern applications. Additionally, its
pay-as-you-go pricing model eliminates the need for
upfront infrastructure investments, allowing busi-
nesses to scale operations efficiently without incur-
ring unnecessary costs.

This research paper explores the design, fea-
tures, and implementation of serverless architecture,
analyzing its potential to revolutionize application
development by enhancing efficiency, reducing op-
erational costs, and promoting sustainability. By
examining its key components and real-world ap-
plications, this study aims to provide valuable in-
sights for developers, businesses, and organizations
looking to leverage serverless computing for future
technological advancements.

II. LITERATURE REVIEW:

A. Evolution of Computing Architectures and the
Need for Serverless Computing

Serverless computing has emerged as a revo-
lutionary approach to address these challenges. It
enables dynamic resource allocation based on real-
time demand, eliminating the need for continuously
running servers. Research highlights that server-
less computing enhances efficiency by executing
functions only when triggered, thereby optimizing
compute resources and reducing idle- time costs.

Fig. 1: Representation of serverless architecture

This approach is particularly beneficial for event-
driven applications, where operations are performed
only when specific triggers, such as HTTP requests
or database updates, occur.

Fig. 2: Comparison with the other research papers

Based on the table, here’s a brief description of
each research paper: 1. Smith et al. (2018): This
research focuses on dynamic scaling for resource
demands but lacks considerations for energy effi-
ciency and cost optimization. Additionally, it does
not include monitoring or real-time adjustments,
indicating a primary emphasis on scalability without
operational cost reductions or efficiency measures.
2. Johnson and Kumar (2019): This paper ex-
plores energy efficiency by incorporating energy-
saving mechanisms. However, it does not include
dynamic scaling capabilities, lacks significant cost-
saving strategies, and does not provide monitoring
or optimization features, suggesting a focus on
energy conservation without adaptive scaling or
real-time optimizations. 3. Davis et al. (2021): The

58

ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 2, Issue 2, (Jul-Dec) 2025

study enables scaling based on demand fluctuations
and includes cost optimization features, which help
in managing resources efficiently. However, it does
not address energy efficiency and lacks real-time
monitoring capabilities, making it more suitable for
cost- effective scaling rather than energy-efficient
operations.

B. Serverless Computing: Key Considerations and
Impact

Serverless architectures rely on event-driven ex-
ecution, automatic scaling, and cost optimization
to maximize efficiency. They follow a pay-as-you-
go model, reducing costs while ensuring seamless
performance. Security measures like authentication
and encryption are essential due to the stateless na-
ture of serverless functions. Integration with CI/CD
pipelines enables automated testing and deploy-
ment, accelerating development. Popular serverless
platforms include AWS Lambda, Google Cloud
Functions, and Azure Functions. AWS Lambda inte-
grates well with API Gateway, DynamoDB, and S3
for scalable storage. CI/CD tools and open- source
frameworks like Serverless Framework and

AWS SAM simplify development and deploy-
ment. Serverless computing improves efficiency,
response time, and sustainability, reducing compute
costs by up to 60% and lowering carbon emissions.
High availability and fault tolerance ensure relia-
bility, while modular functions speed up software
updates.

Challenges include cold start latency, vendor
lock-in, execution time limits, and complex mon-
itoring. Solutions include provisioning warm in-
stances, using open-source frameworks, breaking
tasks into smaller functions, and leveraging mon-
itoring tools like AWS CloudWatch.
Serverless adoption drives innovation across indus-
tries. It enhances e-commerce operations, enables
real-time healthcare monitoring, streamlines finan-
cial transactions, and improves IoT data processing.
Startups benefit from reduced infrastructure costs,
making advanced computing accessible to all.

1) Serverless Computing:: Key Considerations
and Impact Serverless architectures rely on event-
driven execution, automatic scaling, and cost op-

timization to maximize efficiency. They follow a
pay-as-you-go model, reducing costs while ensur-
ing seamless performance. Security measures like
authentication and encryption are essential due to
the stateless nature of serverless functions. Inte-
gration with CI/CD pipelines enables automated
testing and deployment, accelerating development.
Popular serverless platforms include AWS Lambda,
Google Cloud Functions, and Azure Functions.
AWS Lambda integrates well with API Gateway,
DynamoDB, and S3 for scalable storage. CI/CD
tools and open- source frameworks like Serverless
Framework and AWS SAM simplify development
and deployment. Serverless computing improves ef-
ficiency, response time, and sustainability, reducing
compute costs by up to 60% and lowering car-
bon emissions. High availability and fault tolerance
ensure reliability, while modular functions speed
up software updates. Challenges include cold start
latency, vendor lock-in, execution time limits, and
complex monitoring. Solutions include provision-
ing warm instances, using open-source frameworks,
breaking tasks into smaller functions, and leverag-
ing monitoring tools like AWS CloudWatch.

Serverless adoption drives innovation across in-
dustries. It enhances e-commerce operations, en-
ables real-time healthcare monitoring, streamlines
financial transactions, and improves IoT data pro-
cessing. Startups benefit from reduced infrastructure
costs, making advanced computing accessible to all.

III. METHODOLOGY:

The development of a serverless architecture re-
quires a structured approach that ensures efficiency,
scalability, and sustainability. This methodology
outlines the key phases involved in the design,
development, deployment, and continuous improve-
ment of the system.

A. Optimized Serverless Computing Framework

1) Needs Assessment Requirements:: Identify
inefficiencies in traditional architectures (costs, un-
derutilization). Serverless offers event-driven ex-
ecution, dynamic resource allocation, CI/CD au-
tomation, and security via API authentication and
encryption.

59

ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 2, Issue 2, (Jul-Dec) 2025

2) Architecture Technology:: Design a server-
less model using AWS Lambda, API Gateway,
and DynamoDB. Key components include event-
driven execution, scalable data management, CI/CD
automation, and security measures.

3) Development & Deployment:: Develop mi-
croservices using AWS Lambda for tasks like au-
thentication and database operations. Use API Gate-
way for communication and a pay-as-you-go model
for cost efficiency.

4) CI/CD Implementation:: Automate testing
and deployment using AWS Code-Build and Code-
Pipeline, ensuring seamless version control and
infrastructure as code.

5) Monitoring & Optimization:: Utilize AWS
CloudWatch for real-time tracking, reduce cold start
latency, enforce security best practices, and opti-
mize cost via auto-scaling and minimal execution
time.

Fig. 3: Architecture Diagram of how the application
works

6) Scalability & Improvement:: Analyse perfor-
mance metrics, gather user feedback, plan multi-
cloud strategies, and explore AI-driven automation
for optimization.

7) Sustainability & Expansion:: Evaluate energy
savings, enable multi-region deployment, and in-
tegrate edge computing, AI automation, and con-
tainerized applications. 8. Disaster Recovery Fault

Tolerance: Ensure high availability with multi-
region deployment, automatic failovers, data back-
ups, and AWS Step Functions for workflow re-
silience.

8) Software Engineering & SDLC: : Adopt
Agile and event-driven paradigms for modular, ef-
ficient development. Use DevOps for automation,
continuous monitoring, and iterative improvements.

9) Technology & System Requirements:: Essen-
tial tools: Docker, GitHub, AWS CLI, and a stable
internet connection. System requirements include
event triggers, cloud platform support, and security
mechanisms.

10) Feasibility Study: : Serverless is feasible
with AWS, Google Cloud, and Azure. Financial:
Pay-as-you-go model minimizes costs. Operational:
Automation reduces infrastructure management, im-
proving efficiency.

Fig. 4: Performance Analyses of the application

IV. SYSTEM DESIGN:

The system design of the serverless architecture
focuses on scalability, cost efficiency, and sustain-
ability by leveraging cloud-native services. Below
is a detailed breakdown of the components, archi-
tecture, and workflow of the system.

A. System Architecture Overview

The system is designed using a serverless, event-
driven model where computing resources are pro-
visioned dynamically based on demand. The key
components of the architecture include:

60

ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 2, Issue 2, (Jul-Dec) 2025

Fig. 5: 0 Level DFD

B. Frontend Layer

The user interface (UI) is developed using React,
Angular, or Vue.js for a seamless and responsive
experience. Authentication and authorization are
managed via Amazon Cognito or Firebase Au-
thentication, ensuring secure user login and access
control. API integration is handled through RESTful
APIs endpoints exposed via AWS API Gateway.

Fig. 6: Screenshot of the frontend code

C. Backend Layer

The backend leverages AWS API Gateway to
manage incoming HTTP requests and route them to
appropriate services. Instead of AWS Lambda, the
backend is built using containerized microservices
running on AWS Fargate or a similar container
orchestration service. These microservices handle
business logic execution, process data, and respond
to API requests efficiently. AWS Step Functions are
used for orchestrating workflows that involve mul-
tiple microservices, ensuring seamless execution of
complex processes.

Fig. 7: Screenshot of the backend code

Fig. 8: Screenshot of the backend code

D. Key Benefits of This System Design

Scalability is achieved through containerized
microservices that automatically adjust resources
based on demand, eliminating manual infrastructure
management. The pay-as- you-go model ensures
cost efficiency by charging only for active resource
utilization. Performance is optimized with event-
driven execution, reducing latency and enhancing
efficiency. Security is strengthened with IAM poli-
cies and API authentication mechanisms. Addition-
ally, sustainability is improved by reducing en-
ergy consumption compared to traditional always-
on server models.

V. RESULT AND FUTURE SCOPE

Based on the research paper, the generated output
from the deployed project aligns with the Backend
Layer of the system design. The Node.js appli-
cation is containerized and deployed using AWS
ECS (Elastic Container Service) instead of AWS
Lambda, ensuring scalability, cost efficiency, and

61

ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 2, Issue 2, (Jul-Dec) 2025

performance optimization. The deployment lever-
ages containerized microservices to handle business
logic execution, process API requests, and manage
data efficiently. The frontend layer likely integrates
with this backend via RESTful APIs endpoints
exposed through AWS API Gateway. Additionally,
authentication and authorization could be managed
using Amazon Cognito or Firebase Authentica-
tion for secure access control. This system design
provides key benefits such as automatic scaling,
eliminating manual infrastructure management, op-
timized performance, reducing latency, and cost
efficiency through a pay-as-you-go model. Further-
more, deploying via AWS ECS enhances security
and sustainability, ensuring lower energy consump-
tion compared to traditional always-on servers.

Fig. 9: Screenshot of the output generated

VI. FUTURE WORK

Further enhancements can improve performance
and usability while maintaining cost efficiency.
Machine learning integration can predict demand
patterns and optimize resource allocation. Enhanced
monitoring tools will enable real-time tracking
of cost and usage. Multi- cloud support can in-
crease flexibility and reduce vendor lock-in. Se-
curity enhancements, such as anomaly detection,
will strengthen data protection. Additionally, perfor-
mance optimization efforts will focus on reducing
cold start times to enhance responsiveness during
peak usage.

VII. CONCLUSION

Testing throughout the development process val-
idated that the system fulfilled both functional

and non-functional requirements. The architecture
demonstrated its ability to handle fluctuating work-
loads without performance degradation, while main-
taining cost efficiency and responsiveness. Fur-
thermore, the system’s alignment with sustainable
business practices supports its role as a practical
solution for companies looking to optimize resource
usage and reduce environmental impact, making it a
forward-thinking approach to modern infrastructure
management [7].

REFERENCES

[1] Amazon Web Services Documentation. (n.d.). Cloud-
Watch monitoring best practices. Available: https://docs.
aws.amazon.com/AmazonCloudWatch/latest/monitoring

[2] Amazon Web Services Documentation. (n.d.). AWS Far-
gate, CodePipeline, CodeBuild, CodeDeploy, and Auto
Scaling services. Available: https://docs.aws.amazon.com

[3] Docker Documentation. (n.d.). Docker containerization
and image management. Available: https://docs.docker.com

[4] Amazon Web Services. (n.d.). Guidelines on building sus-
tainable cloud applications. Available: https://aws.amazon.
com/architecture/well-architected/

[5] R. Yadav, S. Rao, J. Kaushal and R. Makwana, ”Enhancing
Cybersecurity Through Machine Learning: A Comparative
Analysis of Classifier Performance,” 2024 International
Conference on Advances in Computing Research on Sci-
ence Engineering and Technology , Indore, India, 2024, pp.
1-6, doi: 10.1109/ACROSET62108.2024.10743483.

[6] Research Papers. (n.d.). Serverless computing: Eco-
nomic and environmental benefits. Available: https://
researchpapers.com/serverless-computing-benefits

[7] Menzies, T., & Diomidis, D. (2020). Serverless computing:
Benefits and challenges. International Journal of Cloud
Computing and Services Science, 9(2), 42–55. https://doi.
org/10.1016/j.ijcloud.2020.02.001

[8] Clark, R. C., & Mayer, R. E. (2016). E-learning and the
science of instruction: Proven guidelines for consumers
and designers of multimedia learning. John Wiley & Sons.

[9] Chou, P. N. (2016). E-learning success models: An
overview. Higher Education Studies, 6(3), 1–7.

[10] Kozma, R. B. (2001). Counterpoint: Theories and methods
of technology-mediated learning. Instructional Science,
29(2), 93–98.

[11] Nakamura, Y., & Nakamura, A. (2021). Serverless com-
puting for cloud-based web application deployment: A
case study. Journal of Cloud Computing, 8(3), 22–30.
https://doi.org/10.1186/s13677-021-00210-1

62

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring
https://docs.aws.amazon.com
https://docs.docker.com
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/well-architected/
https://researchpapers.com/serverless-computing-benefits
https://researchpapers.com/serverless-computing-benefits
https://doi.org/10.1016/j.ijcloud.2020.02.001
https://doi.org/10.1016/j.ijcloud.2020.02.001
https://doi.org/10.1186/s13677-021-00210-1

	INTRODUCTION
	 Literature Review:
	 Evolution of Computing Architectures and the Need for Serverless Computing
	 Serverless Computing: Key Considerations and Impact
	Serverless Computing:

	 Methodology:
	Optimized Serverless Computing Framework
	Needs Assessment Requirements:
	Architecture Technology:
	Development & Deployment:
	 CI/CD Implementation:
	 Monitoring & Optimization:
	Scalability & Improvement:
	Sustainability & Expansion:
	 Software Engineering & SDLC:
	Technology & System Requirements:
	Feasibility Study:

	System Design:
	System Architecture Overview
	Frontend Layer
	Backend Layer
	 Key Benefits of This System Design

	Result and Future Scope
	Future Work
	Conclusion
	References

