ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2026

MilkoSense: A Rapid Al-Assisted Milk Quality
Testing System for Enhanced Dairy Safety and
Efficiency

Kapil Goyal
Department of Computer Science and Engineering
Acropolis Institute of Technology and Research, Indore,
M.P, India
kapilgoval2 wacropolis.in

Anya Jain
Department of Computer Science and Engineering
Acropolis Institute of Technology and Research, Indore,
M.P, India
anyajain230979@acropolis.in

Abhishek Verma
Department of Computer Science and Engineering
Acropolis Institute of Technology and Research, Indore,
M.P, India
abhishekverma230913@acropolis.in

'Abstract-The dairy industry faces critical challenges in ensuring
milk quality and safety, with traditional testing methods like the
Methylene Blue Dye Reduction Test (MBRT) requiring 4-6 hours,
creating significant bottlenecks in quality assurance processes.
This paper presents MilkoSense, a rapid, portable, and
Al-assisted milk quality monitoring system that integrates
multi-sensor technologies with advanced machine learning
algorithms. The system combines six key sensor types-pH,
temperature, turbidity, Total Dissolved Solids (TDS), gas
detection, and colorimetric analysis-with Convolutional Neural
Networks (CNN) and ensemble learning methods. Integration
with IoT connectivity through ESP32 platforms enables real-time
data transmission and cloud-based analytics. The colorimetric
detection methodology utilizes chromogenic reactions to identify
multiple adulterants simultaneously, while machine learning
models predict spoilage timelines and detect microbial
contamination patterns. MilkoSense achieves significant
reduction in testing time from 4-6 hours to under 30 minutes with
enhanced accuracy exceeding 92%, improved supply chain
transparency, and substantial cost savings through early
intervention. This cost-effective solution represents a paradigm
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shift in dairy quality assurance, making advanced testing
accessible across the entire value chain.

Index Terms—Milk Quality Testing, Artificial Intelligence, Machine
Learning, IoT, Multi-Sensor Integration, Food Safety, Dairy
Industry, Real-time Monitoring, Adulteration Detection, Smart

Agriculture

[. INTRODUCTION

AIRY products constitute a critical component of

global nutrition and food security, with India emerging as the
world’s largest milk producer, contributing approximately
23% of global milk production [1]. The microbial quality of
milk is paramount for consumer safety and operational
efficiency in dairy supply chains. However, current testing
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methodologies present significant limitations that impede
rapid quality assurance and decision-making processes.

A. Background and Motivation

The dairy sector faces mounting pressure from stringent
food safety regulations, increasing incidents of milk
adulteration, and growing consumer awareness regarding
product quality. The Methylene Blue Dye Reduction Test
(MBRT), while reliable, requires 4-6 hours to complete,
making it impractical for modern supply chains demanding
immediate quality verification. This temporal constraint
creates bottlenecks at collection centres, delays processing
decisions, and increases the risk of spoilage propagation.

Recent technological advancements in sensor systems,
artificial intelligence, and Internet of Things (IoT)
connectivity have created unprecedented opportunities for
developing intelligent, real-time quality monitoring systems.
These technologies enable sophisticated pattern recognition,
predictive analytics, and remote monitoring capabilities that
were previously unattainable ~ with  conventional
methodologies.

B. Problem Statement

Current milk quality testing infrastructure suffers from
several critical limitations:

1) Temporal Inefficiency: MBRT requires 4-6 hours,
creating production Dbottlenecks and delayed
interventions

2) Economic Barriers: Commercial testing equipment
costs exceed $10,000, restricting access to large-scale
processors

3) Limited Portability: Laboratory-based testing
prevents on-site quality verification at collection
points

4) Single-Parameter Analysis: Existing solutions
typically assess only one or two quality indicators

5) Reactive Approach: Delayed results prevent
proactive contamination management

C. Research Contributions

This paper presents MilkoSense, an integrated solution
addressing these challenges through the following key
contributions:

A novel multi-sensor fusion architecture combining

complementary sensing modalities for comprehensive

quality assessment

Advanced ensemble machine learning models achieving

(92% accuracy in microbial load estimation and adulteration

detection

IoT-enabled platform with real-time monitoring, cloud

analytics, and automated stakeholder notifications

Cost-effective  portable design (target cost:

democratizing access to advanced testing

10,000)

Comprehensive field validation demonstrating practical
applicability across diverse dairy production contexts

The remainder of this paper is organized as follows: Section II
reviews related work and existing solutions. Section III details
the proposed system architecture and methodology. Section IV
presents implementation details and algorithms. Section V
discusses expected results and validation approach. Section VI
concludes with future research directions.

II. RELATED WORK AND LITERATURE REVIEW

A. Traditional Testing Methods

The MBRT has served as the industry standard for microbial
quality assessment for several decades. This colorimetric method
relies on bacterial enzyme-mediated reduction of methylene blue
dye, with decolorization time inversely proportional to microbial
load. While reliable, its 4-6 Hour duration limits practical utility
in modern dairy operations requiring rapid turnaround.

Standard plate count methods, though highly accurate, require
24-48 hours of incubation and specialized laboratory facilities.
Flow cytometry-based somatic cell counting offers faster results
but requires expensive equipment and trained personnel [4].

B. Commercial Inline Analysis Systems

Several commercial solutions provide automated milk
analysis:

Afimilk Systems: Utilize infrared spectroscopy for Realtime
fat, protein, and lactose measurement during milking operations.
While effective for nutritional profiling, these systems have
limited microbial detection capabilities and high capital costs
($15,000-$50,000) .

Soma Detect: Employs laser-based optical analysis for
somatic cell counting and basic quality parameters. The system
integrates with milking Parlors but lacks portability and
comprehensive adulteration detection.

Bentley Instruments: Provides laboratory-grade analysers with
multi-parameter capabilities but requires centralized testing
facilities and trained operators.

These solutions, while technologically advanced, remain
inaccessible to small and medium-scale producers due to cost
and infrastructure requirements.

C. Al and Machine Learning in Food Quality

Recent research demonstrates significant potential for AI/ML
applications in food quality assessment:

1) Support Vector Machines (SVM): Successfully
applied for adulterant classification using spectroscopic
data, achieving 85-90% accuracy in detecting water
dilution and starch addition.
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2) Convolutional Neural Networks (CNN):
Demonstrated effectiveness in image-based quality
grading, achieving 93% accuracy in detecting visual
anomalies and colour changes indicative of spoilage.

3) Deep Learning for Spectroscopy:

LSTM networks applied to NIR spectroscopy data
achieve real-time composition analysis with accuracy
comparable to laboratory methods.

D. IoT-Based Agricultural Monitoring

IoT  technologies have revolutionized
monitoring:

Baumert developed deep learning-based anomaly detection
for smart irrigation, demonstrating the feasibility of edge

computing for real-time agricultural decision support.

agricultural

E. Research Gap

Despite these advancements, no existing solution
simultaneously addresses:
Comprehensive  multi-parameter  sensing  (microbial,

chemical, and nutritional)

AI/ML-driven rapid analysis (j30 minutes)

IoT connectivity for real-time monitoring and alerts
Portability and cost-effectiveness (j10,000)
Accessibility for small to medium-scale producers

MilkoSense bridges this gap through integrated hardware
software design optimized for dairy quality assurance.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

A. Overall System Architecture

The MilkoSense system architecture comprises three
hierarchical layers as illustrated in Fig. 1: the Sensor Layer for

data acquisition, the Processing Layer for local computation
and communication, and the Application Layer for cloud
analytics and user interfaces.

B. Sensor Layer Design

The sensor layer integrates six complementary sensing
modalities, each targeting specific quality indicators: pH Sensor:
Measures hydrogen ion concentration, detecting acidification due
to bacterial lactic acid production and identifying alkaline
adulterants.

Temperature Sensor: Monitors thermal history crucial for
microbial growth prediction and validates cold chain
maintenance.

TDS Sensor: Measures total dissolved solids through
conductivity, detecting water dilution and salt-based adulterants.

Gas Sensors: MQ-3 detects volatile organic compounds and
alcohols from fermentation; MQ-135 monitors ammonia and CO
from protein degradation.

Colour Sensor: Captures RGB values for colorimetric adulterant
detection using chromogenic reagents.

Turbidity Sensor: Detects suspended particles, indicating
contamination, improper homogenization, or adulteration with
foreign substances.

Gas Sensors: MQ-3 detects volatile organic compounds and
alcohols from fermentation; MQ-135 monitors ammonia and CO
from protein degradation.

Colour Sensor: Captures RGB values for colorimetric
adulterant detection using chromogenic reagents.

Fig. 3: Machine learning pipeline showing data preprocessing,
parallel model execution, and ensemble voting for final quality
determination.

C. Hardware Integration:
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Fig. 2 illustrates the hardware integration schematic. The
ESP32 microcontroller serves as the central processing unit,
interfacing with sensors through analog-to-digital converters
(ADC) and 12C communication protocols.

Power Management: A 3.7V 5000mAh Li-ion battery
provides portable operation for 8-10 hours. Solar charging
capability extends field deployment duration.

Communication: 12C protocol enables multi-device
communication with the colour sensor. UART interface
facilitates debugging and configuration.

D. Machine Learning Framework

The AI/ML framework employs a hierarchical ensemble
architecture as depicted in Fig. 3.
1) Preprocessing Stage: Raw sensor data undergoes
several preprocessing steps:
Noise Reduction: Moving average filter with 5-sample
window

Normalization: StandardScaler normalization:
o=

2) Feature Engineering: Engineered features enhance
model performance:
Temporal Features: Time since collection, temperature
time product

3) Model Architecture: Random Forest Classifier:
100 decision trees with max depth of 15
Gini impurity criterion for split selection
Gradient Boosting Regressor:
150 sequential trees with learning rate 0.1 Mean squared
error loss function Predicts remaining shelf life in hours
Convolutional Neural Network:
3-layer CNN for colorimetric data analysis
Conv layers: 32, 64, 128 filters with ReLU activation
MaxPooling and Dropout (0.3) for regularization
SoftMax output for adulterant classification
Ensemble Voting: Weighted average combining model
outputs:

inna1:0'4 * Orrt0.35 - Qg 10.25 - Ocwy (1)

where Q represents quality scores from respective models.

E. IoT Integration and Cloud Architecture

The cloud architecture utilizes MQTT protocol for efficient
data transmission and implements a microservices-based
backend.

1) Data Transmission:

MQTT broker receives sensor readings at 1Hz
frequency ¢ JSON payload format: {device id,
timestamp, sensor values}

QoS Level 1 ensures at-least-once delivery

Data buffering during connectivity loss with automatic

sync

2) Cloud Services:

Time-Series Database: Influx DB for sensor data storage

TABLE I: Adulterant Detection Protocols

Adulterant Detection Indicator
Method

Water TDS + Reduced
density TDS (;600

ppm)

Starch Todine Blue-black
solution colour

Detergent Phenolphth Pink foam
alein formation

Urea p-DMAB Yellow
reagent coloration

Formalin Chromotro Purple
pic acid coloration

ML Model Serving: TensorFlow Serving with REST API
Analytics Engine: Apache Spark for batch processing
Notification Service: Firebase Cloud Messaging for alerts

F. Colorimetric Adulteration Detection

The colorimetric detection system employs
chromogenic reactions for adulterant identification:

specific

IV. IMPLEMENTATION DETAILS

A. Firmware Development

The ESP32 firmware
architecture using Ferrets tasks:

implements a non-blocking

void sensor Task(void *parameter) {
while(1) { readAllSensors(); applyMovingAverage(); if
(WIFL. Status() == WL_CONNECTED) {
publishToMQTT();
}else {
buffer Locally();
} Takeley(1000 /
portTICK_PERIOD MS);
}
H
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Key Features:

Multi-threaded sensor reading with priority scheduling
Watchdog timer for automatic recovery from hangs

B. Calibration Procedures

Each sensor undergoes rigorous multi-point calibration:

pH Sensor Calibration:
Rinse with distilled water and blot dry
Immerse in pH 7.0 buffer, record voltage V, 3)

Immerse in pH 4.0 buffer, record voltage V, 4)
7.0—4.0

Calculate slope: " = Va4

5) Store calibration coefficients in EEPROM
Turbidity Sensor Calibration: Uses formazan
standards at 0, 100, 200, 400, 800 NTU to establish a
5-point calibration curve with polynomial regression.

- Fresh Milk (3°C) . ——
—®—  ambient [255C)
—*  KilnSenss Predictan T

-"-I —'-."_:F:*T_

Microbiak punt{CFU fmL)

o = 10 15 =0

Tima Choues)

Fig. 4: Microbial growth prediction: comparison of actual
counts at different temperatures versus MilkoSense ML

model predictions (RMSE = 0.15 log CFU/mL).

C. Model Training Process

Dataset:

5,000 milk samples collected from 20 dairy farms

Samples artificially contaminated with known microbial

loads
Adulterants added at 5 concentration levels

Temporal data collected at 0, 2, 4, 6, 12, 24 hours post

collection

Training Configuration:

70/15/15 train/validation/test split

5-fold cross-validation for model selection
Hyperparameter tuning using Bayesian optimization
Training on GPU-enabled cloud instances

D. Mobile Application

The mobile application provides real-time monitoring and
historical analytics: Features:
Real-time sensor value display with graphical trends
Quality grade visualization with color-coded indicators
Push notifications for quality threshold violations
Historical data analysis with exportable reports
Multi-device management for large operations

V. RESULTS AND DISCUSSION

A. System Performance Evaluation

Extensive laboratory and field testing validates MilkoSense
performance across multiple metrics:

Accuracy Analysis: MilkoSense achieves 92.3% accuracy in
microbial load classification, approaching MBRT’s 95%
accuracy while reducing testing time by 87.5%. The slight
accuracy trade-off is acceptable given the substantial temporal
and economic advantages.

TABLE II: Performance Comparison with Traditional

Methods
Metric MilkoSense MBRT
Testing Time 28 min 4-6 hours
Accuracy 92.3% 95.0%
Sensitivity 91.7% 93.5%
Specificity 89.8% 91.2%
Cost per Test 4.50 18-25
Portability Fully portable Lab-based
Real-time Alerts Yes No
Multi-parameter 6 parameters 1 parameter

TABLE III: ML Model Performance Metrics
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Model Task Metric Score
Random Quality Accuracy 94.1%
Forest Classification
(3-class) F1-score 0.928
Gradient Shelf-Life RMSE 3.7 hrs
Boosting Prediction
(Regression) R? 0.891
CNN Adulterant Accuracy 88.5%
Detection
(Multi-label) mAP 0.862
Ensemble Overall Accuracy 92.3%
Quality
Grade Kappa 0.884
*:f [T -
5 [Tl -
£
2 40 ]
'-_f o - Bl b Seres -
z [ == WERT (estended scalel b
=0y 5 1ix 15 10 25 a0

Testing Time {minutes)

Fig. 5: Cumulative detection rate comparison showing
MilkoSense achieving 98% detection within 28 minutes
versus MBRT requiring 6 hours for equivalent detection

rate.

B. Machine Learning Model Performance

Detailed evaluation of individual
demonstrates strong predictive capabilities:

Random Forest Classifier: Achieves 94.1% accuracy in
categorizing milk into Good (;10 CFU/mL), Acceptable
(1010 CFU/mL), and Poor (j10 CFU/mL) quality grades.
Feature importance analysis reveals pH (32%),
temperature-time product (28%), and gas sensor readings
(24%) as the most significant predictors.

ML  components

C. Field Trial Results

Field validation across 15 dairy farms over 12 weeks provides
real-world performance data:

104

hn Lab oratory
Field Conditions

Accuracy %)
e
=

==
um

==
=

Fig. 6: Sensor accuracy comparison between controlled labo-

oratory conditions and real-world field
deployment across six sensor types.
D. Economic Impact Analysis
Cost-benefit analysis demonstrates significant economic

advantages:
Capital Investment:

Hardware components: 6,200

Assembly and calibration: 1,500

Software licensing (1 year): 800

Total system cost: 8,500

Quality Premium: Farms using MilkoSense documentation

achieve 8-12% price premium from quality-conscious buyers and
cooperatives.

E. Comparison with Existing Solutions

Competitive analysis against commercial alternatives:

MilkoSense uniquely combines comprehensive testing,
affordability, and accessibility, filling a critical gap in the market
for small and medium-scale producers.

TABLE IV: Competitive Comparison Matrix

Feature Milko- Afimilk  Soma Bentle
Sense Detect y
Cost () 8,500 151+ 121+ 8L+
Portability High Low Medium Low
Test Time 28 min Real-time Real-time 45
min
Parameters 6 3 4 8
Microbial Yes No Limited Yes
Adulteration  Yes No No Limite
d
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JoT-enabled  Yes Yes Yes Limite
d

Target User  All scales Large Medium+ Large

F. Environmental Impact
Sustainability assessment demonstrates positive environmental
outcomes:
Waste Reduction:
Early spoilage detection prevents 5-7% milk wastage
Reduces environmental burden of dairy waste disposal
Prevents greenhouse gas emissions from spoiled product
degradation
Energy Efficiency:
Low power consumption: 2.5W average, SW peak
Solar charging option eliminates grid dependency
Prevents energy-intensive cold chain violations through
early detection
Resource Optimization:
G. User Feedback and Adoption
Qualitative feedback from field trials reveals strong user
acceptance:
Positive Aspects (mentioned by ;80% users):
Ease of operation with minimal training
Real-time quality visibility and confidence
Mobile app interface intuitive and responsive
Reduced dependency on distant testing laboratories
H. Limitations and Challenges
Several limitations emerged during field validation:
Technical Challenges:

Sensor Drift: pH and gas sensors exhibit 3-5% drift over 3
months, requiring periodic recalibration

Sample Preparation: Manual sampling introduces user
dependent variability

Maintenance requires basic technical skills ¢ Calibration
standard availability in remote regions Model Limitations:
Regional milk composition variations may require model
fine-tuning

VI. FUTURE WORK AND ENHANCEMENTS

A. Hardware Improvements

Planned hardware enhancements for next-generation system:
Advanced Sensing:

NIR spectroscopy module for detailed protein and fat profiling
Electrochemical biosensors for specific pathogen detection
Automated sample collection and injection system
Multi-sample carousel for batch processing Enhanced
Connectivity:

Lora WAN support for long-range connectivity in remote areas
4G/5G cellular modem option for reliable cloud connectivity
Mesh networking capability for multi-device deployments

B. Software and AI Enhancements

Advanced software capabilities under development:
Deep Learning Advancement:

Transformer-based models for improved temporal pattern

recognition

Active learning for continuous model refinement with

minimal labelling

Explainable Al features for transparent decision-making

Predictive Analytics:

Long-term quality forecasting (7-14 days) based on

historical trends

Seasonal pattern recognition for proactive quality

management

Supply chain optimization recommendations

Integration with weather data for environmental impact

modelling

Blockchain Integration:

Immutable quality record storage for complete traceability

Smart contracts for automated payment based on quality

grades

Consumer-accessible quality verification via QR codes

Multi-stakeholder transparency across supply chain

C. Application Domain Expansion

The MilkoSense architecture can be adapted for other

applications:

Other Dairy Products:

Yogurt and fermented products quality monitoring

Cheese aging process optimization

Ice cream and frozen dessert quality control

Infant formula contamination screening Broader Food
Industry:

Irrigation water quality monitoring

Soil nutrient and contamination analysis

Post-harvest quality assessment for fruits and vegetables

Feed quality evaluation for livestock

D. Research Directions

Several research avenues warrant further investigation:

Multi-Modal Fusion: Advanced sensor fusion techniques
combining disparate data types

Transfer Learning: Adapting models across different
geographic regions and seasons

Anomaly Detection: Unsupervised learning for identifying
novel contamination patterns

Human-Al Collaboration: Investigating optimal decision
support interfaces

Fairness and Bias: Ensuring equitable performance across
diverse producer demographics
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VII. CONCLUSION

This paper presented MilkoSense, a comprehensive Al
assisted milk quality testing system addressing critical gaps
in dairy quality assurance. By integrating multi-sensor
arrays with advanced machine learning algorithms and IoT
connectivity, the system achieves rapid testing (;30
minutes) with high accuracy (;92%) at affordable cost
(8,500), making advanced quality testing accessible across
the entire dairy value chain.

Key innovations include:

Novel multi-sensor fusion architecture for comprehensive
quality assessment

Ensemble machine learning approach achieving 92.3%
accuracy

Cloud-based analytics with real-time alerts and historical
trending

Cost-effective portable design democratizing access to
advanced testing

Comprehensive colorimetric adulterant detection
MilkoSense represents a paradigm shift from reactive,
laboratory-based testing to proactive, distributed quality
management. The system empowers smallholder farmers
with tools previously accessible only to large-scale
processors, contributing to improved food safety, enhanced
livelihoods, and sustainable dairy practices.

As global dairy demand continues growing, technologies
like MilkoSense will play increasingly vital roles in ensuring
safe, high-quality products while supporting millions of
dairy farmers. The project demonstrates that thoughtful
integration of sensors, Al, and IoT can create transformative
solutions addressing real-world challenges in agriculture and
food safety.
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