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 1Abstract–The dairy industry faces critical challenges in ensuring 
milk quality and safety, with traditional testing methods like the 
Methylene Blue Dye Reduction Test (MBRT) requiring 4-6 hours, 
creating significant bottlenecks in quality assurance processes. 
This paper presents MilkoSense, a rapid, portable, and 
AI-assisted milk quality monitoring system that integrates 
multi-sensor technologies with advanced machine learning 
algorithms. The system combines six key sensor types-pH, 
temperature, turbidity, Total Dissolved Solids (TDS), gas 
detection, and colorimetric analysis-with Convolutional Neural 
Networks (CNN) and ensemble learning methods. Integration 
with IoT connectivity through ESP32 platforms enables real-time 
data transmission and cloud-based analytics. The colorimetric 
detection methodology utilizes chromogenic reactions to identify 
multiple adulterants simultaneously, while machine learning 
models predict spoilage timelines and detect microbial 
contamination patterns. MilkoSense achieves significant 
reduction in testing time from 4-6 hours to under 30 minutes with 
enhanced accuracy exceeding 92%, improved supply chain 
transparency, and substantial cost savings through early 
intervention. This cost-effective solution represents a paradigm 

shift in dairy quality assurance, making advanced testing 
accessible across the entire value chain. 
Index Terms—Milk Quality Testing, Artificial Intelligence, Machine 
Learning, IoT, Multi-Sensor Integration, Food Safety, Dairy 
Industry, Real-time Monitoring, Adulteration Detection, Smart 
Agriculture 

 
I. INTRODUCTION 

DAIRY products constitute a critical component of 

global nutrition and food security, with India emerging as the 
world’s largest milk producer, contributing approximately 
23% of global milk production [1]. The microbial quality of 
milk is paramount for consumer safety and operational 
efficiency in dairy supply chains. However, current testing 
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methodologies present significant limitations that impede 
rapid quality assurance and decision-making processes. 

A. Background and Motivation 
The dairy sector faces mounting pressure from stringent 

food safety regulations, increasing incidents of milk 
adulteration, and growing consumer awareness regarding 
product quality. The Methylene Blue Dye Reduction Test 
(MBRT), while reliable, requires 4-6 hours to complete, 
making it impractical for modern supply chains demanding 
immediate quality verification. This temporal constraint 
creates bottlenecks at collection centres, delays processing 
decisions, and increases the risk of spoilage propagation.  

Recent technological advancements in sensor systems, 
artificial intelligence, and Internet of Things (IoT)  
connectivity have created unprecedented opportunities for 
developing intelligent, real-time quality monitoring systems. 
These technologies enable sophisticated pattern recognition, 
predictive analytics, and remote monitoring capabilities that 
were previously unattainable with conventional 
methodologies. 
 

B. Problem Statement 

  Current milk quality testing infrastructure suffers from 
several critical limitations: 

1)​ Temporal Inefficiency: MBRT requires 4-6 hours, 
creating production bottlenecks and delayed 
interventions 

2)​ Economic Barriers: Commercial testing equipment 
costs exceed $10,000, restricting access to large-scale 
processors 

3)​ Limited Portability: Laboratory-based testing 
prevents on-site quality verification at collection 
points 

4)​ Single-Parameter Analysis: Existing solutions 
typically assess only one or two quality indicators 

5)​ Reactive Approach: Delayed results prevent 
proactive contamination management 

C. Research Contributions 

  This paper presents MilkoSense, an integrated solution 
addressing these challenges through the following key 
contributions: 

A novel multi-sensor fusion architecture combining 
complementary sensing modalities for comprehensive 
quality assessment 
Advanced ensemble machine learning models achieving 
¿92% accuracy in microbial load estimation and adulteration 
detection 
IoT-enabled platform with real-time monitoring, cloud 
analytics, and automated stakeholder notifications 
Cost-effective portable design (target cost: 10,000) 
democratizing access to advanced testing 

Comprehensive field validation demonstrating practical 
applicability across diverse dairy production contexts 
The remainder of this paper is organized as follows: Section II 

reviews related work and existing solutions. Section III details 
the proposed system architecture and methodology. Section IV 
presents implementation details and algorithms. Section V 
discusses expected results and validation approach. Section VI 
concludes with future research directions.      

II. RELATED WORK AND LITERATURE REVIEW 

A. Traditional Testing Methods 

The MBRT has served as the industry standard for microbial 
quality assessment for several decades. This colorimetric method 
relies on bacterial enzyme-mediated reduction of methylene blue 
dye, with decolorization time inversely proportional to microbial 
load. While reliable, its 4-6 Hour duration limits practical utility 
in modern dairy operations requiring rapid turnaround. 

Standard plate count methods, though highly accurate, require 
24-48 hours of incubation and specialized laboratory facilities. 
Flow cytometry-based somatic cell counting offers faster results 
but requires expensive equipment and trained personnel [4]. 

B. Commercial Inline Analysis Systems 

Several commercial solutions provide automated milk 
analysis: 

Afimilk Systems: Utilize infrared spectroscopy for Realtime 
fat, protein, and lactose measurement during milking operations. 
While effective for nutritional profiling, these systems have 
limited microbial detection capabilities and high capital costs 
($15,000-$50,000) . 

Soma Detect: Employs laser-based optical analysis for 
somatic cell counting and basic quality parameters. The system 
integrates with milking Parlors but lacks portability and 
comprehensive adulteration detection. 

Bentley Instruments: Provides laboratory-grade analysers with 
multi-parameter capabilities but requires centralized testing 
facilities and trained operators. 

 
These solutions, while technologically advanced, remain 

inaccessible to small and medium-scale producers due to cost 
and infrastructure requirements. 

 
C. AI and Machine Learning in Food Quality 

Recent research demonstrates significant potential for AI/ML 
applications in food quality assessment: 

1)​ Support Vector Machines (SVM): Successfully 
applied for adulterant classification using spectroscopic 
data, achieving 85-90% accuracy in detecting water 
dilution and starch addition.  
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2)​ Convolutional Neural Networks (CNN):  
Demonstrated effectiveness in image-based quality 
grading, achieving 93% accuracy in detecting visual 
anomalies and colour changes indicative of spoilage.  

3)​ Deep Learning for Spectroscopy: 
LSTM networks applied to NIR spectroscopy data 
achieve real-time composition analysis with accuracy 
comparable to laboratory methods. 

 
D. IoT-Based Agricultural Monitoring 

IoT technologies have revolutionized agricultural 
monitoring: 

Baumert developed deep learning-based anomaly detection 
for smart irrigation, demonstrating the feasibility of edge 
computing for real-time agricultural decision support. 

 
E. Research Gap 

Despite these advancements, no existing solution 
simultaneously addresses: 

Comprehensive multi-parameter sensing (microbial, 
chemical, and nutritional) 
AI/ML-driven rapid analysis (¡30 minutes) 
IoT connectivity for real-time monitoring and alerts 
Portability and cost-effectiveness (¡10,000) 
Accessibility for small to medium-scale producers 
MilkoSense bridges this gap through integrated hardware 

software design optimized for dairy quality assurance. 

III. SYSTEM ARCHITECTURE AND METHODOLOGY 

A. Overall System Architecture 

The MilkoSense system architecture comprises three 
hierarchical layers as illustrated in Fig. 1: the Sensor Layer for 

data acquisition, the Processing Layer for local computation 
and communication, and the Application Layer for cloud 
analytics and user interfaces. 
 

B. Sensor Layer Design 

The sensor layer integrates six complementary sensing 
modalities, each targeting specific quality indicators: pH Sensor: 
Measures hydrogen ion concentration, detecting acidification due 
to bacterial lactic acid production and identifying alkaline 
adulterants. 

Temperature Sensor: Monitors thermal history crucial for 
microbial growth prediction and validates cold chain 
maintenance.   

TDS Sensor: Measures total dissolved solids through 
conductivity, detecting water dilution and salt-based adulterants. 

Gas Sensors: MQ-3 detects volatile organic compounds and 
alcohols from fermentation; MQ-135 monitors ammonia and CO 
from protein degradation. 
Colour Sensor: Captures RGB values for colorimetric adulterant 
detection using chromogenic reagents. 

 
Turbidity Sensor: Detects suspended particles, indicating 

contamination, improper homogenization, or adulteration with 
foreign substances. 

Gas Sensors: MQ-3 detects volatile organic compounds and 
alcohols from fermentation; MQ-135 monitors ammonia and CO 
from protein degradation. 

Colour Sensor: Captures RGB values for colorimetric 
adulterant detection using chromogenic reagents. 
 Fig. 3: Machine learning pipeline showing data preprocessing, 
parallel model execution, and ensemble voting for final quality 
determination. 

​
C. Hardware Integration: 
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  Fig. 2 illustrates the hardware integration schematic. The 
ESP32 microcontroller serves as the central processing unit, 
interfacing with sensors through analog-to-digital converters 
(ADC) and I2C communication protocols. 

Power Management: A 3.7V 5000mAh Li-ion battery 
provides portable operation for 8-10 hours. Solar charging 
capability extends field deployment duration. 

Communication: I2C protocol enables multi-device 
communication with the colour sensor. UART interface 
facilitates debugging and configuration. 

D. Machine Learning Framework 
 

The AI/ML framework employs a hierarchical ensemble 
architecture as depicted in Fig. 3. 

1)​ Preprocessing Stage: Raw sensor data undergoes 
several preprocessing steps: 
Noise Reduction: Moving average filter with 5-sample 
window 
Normalization: StandardScaler normalization: ​
norm =  

2)​ Feature Engineering: Engineered features enhance 
model performance: 
Temporal Features: Time since collection, temperature 
time product 

3)​ Model Architecture: Random Forest Classifier: 
100 decision trees with max depth of 15 
Gini impurity criterion for split selection 
Gradient Boosting Regressor: 
150 sequential trees with learning rate 0.1 Mean squared 
error loss function Predicts remaining shelf life in hours 
Convolutional Neural Network: 
3-layer CNN for colorimetric data analysis  
Conv layers: 32, 64, 128 filters with ReLU activation 
MaxPooling and Dropout (0.3) for regularization 
SoftMax output for adulterant classification 
Ensemble Voting: Weighted average combining model 
outputs: 

​ Qfinal =0.4 · QRF +0.35 · QGB +0.25 · QCNN​ (1) 

       where Q represents quality scores from respective models. 

E. IoT Integration and Cloud Architecture 
 

The cloud architecture utilizes MQTT protocol for efficient 
data transmission and implements a microservices-based 
backend. 

1)​ Data Transmission: 
 
MQTT broker receives sensor readings at 1Hz 
frequency • JSON payload format: {device id, 
timestamp, sensor values} 
QoS Level 1 ensures at-least-once delivery 

Data buffering during connectivity loss with automatic 
sync 

2)​ Cloud Services: 
 
Time-Series Database: Influx DB for sensor data storage  

 
 

TABLE I: Adulterant Detection Protocols 
 

Adulterant Detection 
Method 

Indicator 

Water TDS + 
density 

Reduced 
TDS (¡600 
ppm) 

Starch Iodine 
solution 

Blue-black 
colour 

Detergent Phenolphth
alein 

Pink foam 
formation 

Urea p-DMAB 
reagent 

Yellow 
coloration 

Formalin Chromotro
pic acid 

Purple 
coloration 

   
 
ML Model Serving: TensorFlow Serving with REST API 
Analytics Engine: Apache Spark for batch processing 
Notification Service: Firebase Cloud Messaging for alerts 

 

F. Colorimetric Adulteration Detection 
 

The colorimetric detection system employs specific 
chromogenic reactions for adulterant identification: 

 
IV. IMPLEMENTATION DETAILS 

 
A. Firmware Development 

The ESP32 firmware implements a non-blocking  
architecture using Ferrets tasks: 

          void sensor Task(void *parameter) { 
while(1) { readAllSensors(); applyMovingAverage(); if 

(WIFI. Status() == WL_CONNECTED) { 
publishToMQTT(); 

} else { 
buffer Locally(); 

} Takeley(1000 / 
portTICK_PERIOD_MS); 

} 
} 
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   Key Features: 
 

Multi-threaded sensor reading with priority scheduling 
Watchdog timer for automatic recovery from hangs 
 

B. Calibration Procedures 
 

Each sensor undergoes rigorous multi-point calibration: 
pH Sensor Calibration: 
Rinse with distilled water and blot dry 
Immerse in pH 7.0 buffer, record voltage V7 3) 
Immerse in pH 4.0 buffer, record voltage V4 4) 

Calculate slope:  
5) Store calibration coefficients in EEPROM 
Turbidity Sensor Calibration: Uses formazan 
standards at 0, 100, 200, 400, 800 NTU to establish a 
5-point calibration curve with polynomial regression. 

 

 

Fig. 4: Microbial growth prediction: comparison of actual 
counts at different temperatures versus MilkoSense ML 
model predictions (RMSE = 0.15 log CFU/mL). 

C. Model Training Process 

Dataset: 
5,000 milk samples collected from 20 dairy farms 
Samples artificially contaminated with known microbial 
loads 
Adulterants added at 5 concentration levels 
Temporal data collected at 0, 2, 4, 6, 12, 24 hours post 
collection 
 

      Training Configuration: 
70/15/15 train/validation/test split 
5-fold cross-validation for model selection 
Hyperparameter tuning using Bayesian optimization 
Training on GPU-enabled cloud instances 
  
D. Mobile Application 

 

  The mobile application provides real-time monitoring and 
historical analytics: Features: 
Real-time sensor value display with graphical trends 
Quality grade visualization with color-coded indicators 
Push notifications for quality threshold violations 
Historical data analysis with exportable reports 
Multi-device management for large operations 

V. RESULTS AND DISCUSSION 

A. System Performance Evaluation 

Extensive laboratory and field testing validates MilkoSense 
performance across multiple metrics: 

Accuracy Analysis: MilkoSense achieves 92.3% accuracy in 
microbial load classification, approaching MBRT’s 95% 
accuracy while reducing testing time by 87.5%. The slight 
accuracy trade-off is acceptable given the substantial temporal 
and economic advantages. 

 
TABLE II: Performance Comparison with Traditional 

Methods 
 

 
 
 
 
 
 

TABLE III: ML Model Performance Metrics 
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Metric MilkoSense MBRT 

Testing Time 28 min 4-6 hours 

Accuracy 92.3% 95.0% 

Sensitivity 91.7% 93.5% 

Specificity 89.8% 91.2% 

Cost per Test 4.50 18-25 

Portability Fully portable Lab-based 

Real-time Alerts Yes No 

Multi-parameter 6 parameters 1 parameter 

 
 
 

  



 
 

Model Task Metric Score 

Random 
Forest 

Quality 
Classification 

Accuracy 94.1% 

 (3-class) F1-score 0.928 

Gradient 
Boosting 

Shelf-Life 
Prediction 

RMSE 3.7 hrs 

 (Regression) R² 0.891 

CNN Adulterant 
Detection 

Accuracy 88.5% 

 (Multi-label) mAP 0.862 

Ensemble Overall 
Quality 

Accuracy 92.3% 

 Grade Kappa 0.884 

    

 

 

Fig. 5: Cumulative detection rate comparison showing 
MilkoSense achieving 98% detection within 28 minutes 
versus MBRT requiring 6 hours for equivalent detection 

rate. 

B. Machine Learning Model Performance 
Detailed evaluation of individual ML components 

demonstrates strong predictive capabilities: 
Random Forest Classifier: Achieves 94.1% accuracy in 

categorizing milk into Good (¿10 CFU/mL), Acceptable 
(1010 CFU/mL), and Poor (¡10 CFU/mL) quality grades. 
Feature importance analysis reveals pH (32%), 
temperature-time product (28%), and gas sensor readings 
(24%) as the most significant predictors. 

C. Field Trial Results 
Field validation across 15 dairy farms over 12 weeks provides 

real-world performance data: 
 

 
oratory conditions and real-world field 

deployment across six sensor types. 

D. Economic Impact Analysis 
Cost-benefit analysis demonstrates significant economic 

advantages: 
Capital Investment: 

Hardware components: 6,200 
Assembly and calibration: 1,500 
Software licensing (1 year): 800 
Total system cost: 8,500 

Quality Premium: Farms using MilkoSense documentation 
achieve 8-12% price premium from quality-conscious buyers and 
cooperatives. 

E. Comparison with Existing Solutions 
Competitive analysis against commercial alternatives: 
MilkoSense uniquely combines comprehensive testing, 

affordability, and accessibility, filling a critical gap in the market 
for small and medium-scale producers. 
 

TABLE IV: Competitive Comparison Matrix 
 

Feature Milko- 
Sense 

Afimilk Soma 
Detect 

Bentle
y 

Cost () 8,500 15L+ 12L+ 8L+ 
Portability High Low Medium Low 
Test Time 28 min Real-time Real-time 45 

min 
Parameters 6 3 4 8 
Microbial Yes No Limited Yes 
Adulteration Yes No No Limite

d 
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IoT-enabled Yes Yes Yes Limite
d 

Target User All scales Large Medium+ Large 
 
F. Environmental Impact 

Sustainability assessment demonstrates positive environmental 
outcomes: 

Waste Reduction: 
Early spoilage detection prevents 5-7% milk wastage 
Reduces environmental burden of dairy waste disposal 

Prevents greenhouse gas emissions from spoiled product 
degradation 
Energy Efficiency: 
Low power consumption: 2.5W average, 5W peak 
Solar charging option eliminates grid dependency 
Prevents energy-intensive cold chain violations through 
early detection 
Resource Optimization: 

G. User Feedback and Adoption 
Qualitative feedback from field trials reveals strong user 

acceptance: 
Positive Aspects (mentioned by ¿80% users): 

Ease of operation with minimal training 
Real-time quality visibility and confidence 
Mobile app interface intuitive and responsive 
Reduced dependency on distant testing laboratories 

H. Limitations and Challenges 
  Several limitations emerged during field validation: 
Technical Challenges: 
Sensor Drift: pH and gas sensors exhibit 3-5% drift over 3 
months, requiring periodic recalibration 
Sample Preparation: Manual sampling introduces user 
dependent variability 
Maintenance requires basic technical skills • Calibration 
standard availability in remote regions Model Limitations: 
Regional milk composition variations may require model 
fine-tuning 
 

VI. FUTURE WORK AND ENHANCEMENTS 
 

A. Hardware Improvements 
Planned hardware enhancements for next-generation system: 
Advanced Sensing: 
NIR spectroscopy module for detailed protein and fat profiling 
Electrochemical biosensors for specific pathogen detection 
Automated sample collection and injection system 
Multi-sample carousel for batch processing Enhanced 
Connectivity: 
Lora WAN support for long-range connectivity in remote areas 
4G/5G cellular modem option for reliable cloud connectivity 
Mesh networking capability for multi-device deployments 

B. Software and AI Enhancements 
  Advanced software capabilities under development: 
Deep Learning Advancement: 

Transformer-based models for improved temporal pattern 
recognition 
Active learning for continuous model refinement with 
minimal labelling 
Explainable AI features for transparent decision-making 
Predictive Analytics: 
Long-term quality forecasting (7-14 days) based on 
historical trends 
Seasonal pattern recognition for proactive quality 
management 
Supply chain optimization recommendations 
Integration with weather data for environmental impact 
modelling 
Blockchain Integration: 
Immutable quality record storage for complete traceability 
Smart contracts for automated payment based on quality 
grades 
Consumer-accessible quality verification via QR codes 
Multi-stakeholder transparency across supply chain 

C. Application Domain Expansion 
The MilkoSense architecture can be adapted for other 

applications: 
Other Dairy Products: 
Yogurt and fermented products quality monitoring 
Cheese aging process optimization 
Ice cream and frozen dessert quality control 
Infant formula contamination screening Broader Food 
Industry: 
Irrigation water quality monitoring 
Soil nutrient and contamination analysis 
Post-harvest quality assessment for fruits and vegetables 
Feed quality evaluation for livestock 

D. Research Directions 
  Several research avenues warrant further investigation: 
Multi-Modal Fusion: Advanced sensor fusion techniques 
combining disparate data types 
Transfer Learning: Adapting models across different 
geographic regions and seasons 
Anomaly Detection: Unsupervised learning for identifying 
novel contamination patterns 
Human-AI Collaboration: Investigating optimal decision 
support interfaces 
Fairness and Bias: Ensuring equitable performance across 
diverse producer demographics 
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VII. CONCLUSION 

This paper presented MilkoSense, a comprehensive AI 
assisted milk quality testing system addressing critical gaps 
in dairy quality assurance. By integrating multi-sensor 
arrays with advanced machine learning algorithms and IoT 
connectivity, the system achieves rapid testing (¡30 
minutes) with high accuracy (¿92%) at affordable cost 
(8,500), making advanced quality testing accessible across 
the entire dairy value chain. 

 
Key innovations include: 

Novel multi-sensor fusion architecture for comprehensive 
quality assessment 
Ensemble machine learning approach achieving 92.3% 
accuracy 
Cloud-based analytics with real-time alerts and historical 
trending 
Cost-effective portable design democratizing access to 
advanced testing 
Comprehensive colorimetric adulterant detection 
MilkoSense represents a paradigm shift from reactive, 
laboratory-based testing to proactive, distributed quality 
management. The system empowers smallholder farmers 
with tools previously accessible only to large-scale 
processors, contributing to improved food safety, enhanced 
livelihoods, and sustainable dairy practices. 
As global dairy demand continues growing, technologies 
like MilkoSense will play increasingly vital roles in ensuring 
safe, high-quality products while supporting millions of 
dairy farmers. The project demonstrates that thoughtful 
integration of sensors, AI, and IoT can create transformative 
solutions addressing real-world challenges in agriculture and 
food safety. 
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