

UrbanTrail an Intelligent Multi-Route Navigation

System for Smart Cities

Akshay Jain
Acropolis Institute of Technology & Research Indore

akshayjain220160@acropolis.in

Chandan Sikarwar
 Acropolis Institute of Technology & Research Indore

chandansikarwar220422@acropolis.in

Chanchal Bansal
Acropolis Institute of Technology & Research Indore

chanchalbansal@acropolis.in

Vandana Kate

 Acropolis Institute of Technology & Research Indore
vandanakate@acropolis.in

Adarsh Jain

Acropolis Institute of Technology & Research Indore
adarshjain220161@acropolis.in ​

1 Abstract—With rapid urbanization and the continuous rise in

vehicular traffic, cities like Indore face severe challenges in
efficient navigation and route optimization. Existing navigation
systems such as Google Maps typically provide a single shortest
path based on distance, neglecting key parameters like fuel
cost, tolls, road quality, and real-time travel convenience.
Moreover, these systems lack support for bilingual accessibility,
which limits their usability among non-English users. The
proposed solution, Quick Path, is an intelligent, bilingual
route-finding application that leverages Dijkstra’s Algorithm
and K-Shortest Path techniques to generate multiple optimized
routes between source and destination points. Each route is
evaluated based on travel distance, estimated time (ETA), fuel
cost, and toll charges, helping users choose the most suitable
option. The platform features a bilingual interface (English and
Hindi) for greater inclusivity and a scrollable Google
Maps–like interface that allows users to view multiple routes
dynamically. The system architecture integrates Java (Spring
Boot) for backend computation, MySQL for data management,
and Leaflet.js / Google Maps API for real-time map
visualization. By combining algorithmic precision with
real-world factors, Quick Path provides an efficient,
user-friendly, and data-driven navigation experience. This
paper contributes to smart city mobility, supporting
sustainable urban transport and digital accessibility under
India’s Smart City and Digital India initiatives.Index
Terms—Dijkstra’s Algorithm, K-Shortest Path, Smart City,
Bilingual Interface, Route Optimization, Intelligent Navigation
System, Urban Mobility..

I. INTRODUCTION

In recent years, the rapid growth of urbanization and

vehicle density has created significant challenges in urban
transportation and route optimization. Cities like Indore, one
of India’s fastest-developing smart cities, experience daily
traffic congestion, road confusion, and inconsistent travel
times. Most existing navigation systems, such as Google
Maps and Waze, primarily rely on static shortest-path
algorithms that calculate routes based only on distance or
estimated time, while neglecting crucial real-world factors
like fuel cost, toll expenses, road quality, and localized
accessibility.

Lack of multilingual support is another drawback of the
current systems, which makes them challenging for many
non-English speaking users, especially in India.
Furthermore, conventional navigation tools frequently only
show the one shortest path, requiring users to take the same
clogged or expensive route without providing useful
alternatives.

The proposed solution, Quick Path, addresses these
shortcomings by developing an intelligent, bilingual, and
cost-aware route-finding system using Dijkstra’s Algorithm
and K-Shortest Path techniques. This system not only
determines the shortest path but also generates multiple
optimized routes, allowing users to compare them based on
distance, cost, and estimated time of arrival (ETA).

161
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

mailto:akshayjain220160@Acropolis.in
mailto:chandansikarwar220422@acropolis.in
mailto:chanchalbansal@acropolis.in
mailto:vandanakate@acropolis.in
mailto:adarshjain220161@acropolis.in

Quick Path provides a scrollable, Google Maps–like
interface that enables users to view and choose among
multiple routes easily. It also supports English and Hindi to
improve accessibility for regional users. The system
integrates a MySQL database for storing location data and
uses Java (Spring Boot) for backend processing and
Leaflet.js / Google Maps API for interactive visualization.

By combining algorithmic efficiency, usability, and bilingual
design, Quick Path offers a practical solution to modern
transportation problems and contributes to the Smart City and
Digital India initiatives, promoting sustainable, inclusive, and
data-driven urban mobility.

A.​ Purpose

Urban cities like Indore are facing rapid population growth
and increasing vehicle density, resulting in frequent
congestion and longer travel times. Commuters often
struggle to choose the most efficient routes, as traditional
navigation systems usually display only a single path based
on distance rather than dynamic conditions such as traffic,
tolls, or road quality.

The Quick Path Solution aims to develop a bilingual,
intelligent route-finding system that assists commuters in
Indore in selecting the most economical and efficient routes
between two points. Unlike traditional navigation systems
that provide only a single shortest route, Quick Path
incorporates Dijkstra’s Algorithm and K-Shortest Path
techniques to generate multiple optimized routes based on
distance, travel time, and fuel cost.

To enhance accessibility, accuracy, and user experience, the
system integrates several advanced features:

1.​ Bilingual Interface (Hindi and English):​
The solution supports both Hindi and English
languages, ensuring inclusivity for local users. This
feature allows commuters to interact with the
application comfortably, removing language
barriers and promoting user-friendliness.​

2.​ Real-Time Route Comparison:​
Quick Path enables users to view and compare
multiple route options simultaneously. It
dynamically analyzes available paths based on live
data such as distance and estimated travel time,
empowering commuters to make quick and
informed travel decisions.​

3.​ MySQL Database Integration:​
The system employs a robust MySQL database to
manage and store user information, location data,
and road network details efficiently. This
centralized data management ensures accuracy,
scalability, and smooth system performance during

route computation.​

4.​ Interactive Map Visualization:​
Quick Path integrates an interactive map interface
that displays all possible routes visually. It
highlights key details like fuel cost, road type, and
congestion levels, enabling users to better
understand and choose between available routes.​

5.​ AI-Based Route Optimization:​
By utilizing Dijkstra’s Algorithm and K-Shortest
Path methods, the system intelligently computes
multiple efficient and economical routes. This
approach ensures that users not only get the
shortest path but also the most optimal route based
on real-world conditions such as cost, time, and
road quality.

Through these features, Quick Path provides a modern,
data-driven solution to improve urban mobility, reduce
travel inefficiencies, and contribute to the broader goals of
Digital India and Smart City initiatives. By merging
algorithmic precision with an intuitive interface, the solution
enhances the daily commuting experience for users and
supports sustainable urban transport planning.

Fig. 1. System Flow and Interaction Diagram

B. System development life cycle

Fig. 2. System development life cycle

162
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

The development of the Quick Path solution follows a
structured Software Development Life Cycle (SDLC) model
to ensure systematic progress, accuracy, and maintainability.

1.​ Requirement analysis: All solution and user
requirements were gathered during this stage. A
multi-route navigation solution, bilingual support,
cost estimation, and a user interface akin to Google
Maps were the primary requirements that were
found.

2.​ System Design: Building architecture diagrams, ER
models, and data flow diagrams was the main
objective of the design phase. The MySQL
database schema was designed to securely hold
user credentials, toll prices, and route data.

3.​ Implementation: Html, Css, and Javascript were
applied for front-end development, Leaflet.js was
used for map visualisation, and Java (Spring Boot)
was used for back-end logic.

4.​ Testing: The testing phase made sure each part
operated as intended. Bilingual user interface
elements were checked for accurate translations,
and algorithms were tested for route calculating
accuracy.

5.​ Deployment: Since the solution was initially set up
on a local or cloud server, users can easily register,
log in, and use the route-finding system.

6.​ Debugging, database updates, and upcoming
improvements like real-time traffic integration and
mobile app expansion are all a part of regular
maintenance.

II. LITERATURE SURVEY
2.1 Route Optimization Using Dijkstra’s Algorithm
The Dijkstra’s Algorithm, one of the most dependable
graph-based techniques for determining the shortest route
between two nodes, was first presented by E. W. Dijkstra
[1]. His model laid the foundation for many modern
navigation solution. However, traditional implementations
focus solely on minimizing distance, ignoring key
parameters such as time, cost, or fuel efficiency. The Quick
Path solution enhances this algorithm by incorporating
multi-route and cost-based optimization, making its route
recommendations more context-aware and user-friendly.

2.2 K-Shortest Path and Multi-Route Generation
The K-Shortest Path Algorithms developed by Yen [2] and
Eppstein [3] provide multiple feasible paths between two
locations, improving user flexibility and adaptability. This
concept directly supports Quick Path, which employs similar
logic to present three route options—shortest, fastest, and
most economical—thereby improving decision-making and
user experience.

2.3 Intelligent Navigation and Real-Time Systems
Modern navigation solutions such as Google Maps [4] and
Waze [5] use heuristic algorithms like A* and Dijkstra’s
variants for real-time traffic updates and dynamic rerouting

based on GPS data. Despite their effectiveness, these
platforms lack bilingual support and localized adaptability.
The Quick Path solution addresses this limitation by offering
bilingual interfaces (English & Hindi) and integrating cost
and time-based parameters relevant to Indian commuters.

2.4 Smart City and IoT Integration in Transportation
Researchers such as Sharma et al. [6] and Kumar et al. [7]
explored the integration of IoT sensors and machine learning
models in Intelligent Transportation Systems (ITS) to
enhance congestion management and route prediction. Their
work highlights the importance of data-driven mobility for
smart cities. The Quick Path system aligns with this goal by
supporting future integration of live traffic APIs and
IoT-based sensors for improved city-level navigation.

2.5 Bilingual Interfaces and Accessibility in Navigation
Systems
Although accurate, existing systems like WeGo [8] and
MapQuest [9] primarily function in English, posing
challenges for non-native speakers. Studies by Singh and
Tiwari [10] emphasize that multilingual support
significantly enhances inclusivity and user satisfaction. The
Quick Path application integrates Hindi and English
interfaces, promoting accessibility and supporting India’s
Digital Integration and Smart City Initiatives.

2.6 Cost and Fuel Optimization Models
Cost-based route optimization models proposed by Kumar
and Mehta [11] consider fuel economy, toll charges, and
environmental impact. Their findings show that considering
both financial and ecological factors results in more
sustainable route choices. Extending this, Quick Path
incorporates fuel and toll estimation modules to help users
select routes that are both cost-efficient and time-saving.

2.7 Data Management and Visualization Frameworks
Studies by Li Yang et al. [12] and Kristof Geebelen et al.
[13] discuss the use of MVC frameworks and MySQL
databases for modular, scalable web applications. The Quick
Path system follows a similar structure—using Java (Spring
Boot) for backend logic, MySQL for route data storage, and
Leaflet.js / Google Maps API for visualization—ensuring
scalability, maintainability, and performance.

Table 1: Summary of Literature Survey
Section​ Topic​ Author(s) / Source​ Main
Contribution​ Relevance to Quick Path

Secti
on

Topic Author(s) /
Source

Main
Contributio
n

Relev
ance
to
Quick
Path

163
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

2.1 Route
Optimiza
tion
Using
Dijkstra’s
Algorith
m

E. W.
Dijkstra [1]

Introduced
shortest
path
computation
using graph
theory

Forms
the
found
ation
of
route
calcul
ation

2.2 K-Shorte
st Path
and
Multi-Ro
ute
Generatio
n

Yen [2],
Eppstein [3]

Proposed
multiple
alternate
route
generation

Enabl
es
multi-
path
sugges
tion
(short
est,
fastest
,
cheape
st)

2.3 Intelligen
t
Navigatio
n and
Real-Tim
e
Systems

Google
Maps [4],
Waze [5]

Developed
real-time
navigation
using GPS
data

Inspir
es
dynam
ic
rerouti
ng and
real-ti
me
update
s

2.4 Smart
City &
IoT
Integratio
n

Sharma et al.
[6], Kumar
et al. [7]

Applied IoT
and ML in
traffic
systems

Guide
s
integr
ation
with
Smart
City
frame
works

2.5 Bilingual
Interfaces
&
Accessibi
lity

Singh &
Tiwari [10],
WeGo [8],
MapQuest
[9]

Highlighted
multilingual
inclusion

Motiv
ates
Englis
h-Hin
di
biling
ual
suppor
t

2.6 Cost &
Fuel
Optimiza
tion
Models

Kumar &
Mehta [11]

Introduced
toll/fuel-aw
are route
selection

Suppo
rts
cost-b
ased
travel
decisi
on

modul
es

2.7 Data
Manage
ment &
Visualiza
tion

Li Yang et al.
[12], Kristof
Geebelen et
al. [13]

Promoted
modular
MVC &
database
frameworks

Ensur
es
scalab
ility
and
interac
tive
map
visuali
zation

III. PROPOSED METHODOLOGY

The Quick Path solution provides an intelligent and dynamic
route-finding solution designed for real-world navigation
within Indore city. The solution’s goal is to calculate
multiple optimized paths—shortest, fastest, and most
economical—between a source and destination, based on
real-time data.

To achieve this, the solution implements a dual-algorithm
approach that combines Dijkstra’s Algorithm for
shortest-path computation and K-Shortest Path Algorithm
for generating multiple alternate routes.

3.1 Dijkstra’s Algorithm

Purpose:​
Dijkstra’s Algorithm is used to compute the shortest path
between two nodes in a weighted graph. Each node
represents a location, and each edge represents a road with
an associated cost (distance, time, or fuel).

Working Principle:​
The algorithm iteratively explores the shortest possible
distance from the source node to all other nodes until it
reaches the destination.

Mathematical Representation:​
 Let

●​ G(V,E) be a weighted graph,
●​ V = set of vertices (locations),
●​ E = set of edges (roads),
●​ w(u,v) = weight or cost between node uuu and v.

We define:

D[v]=min⁡(D[u]+w(u,v))

where D[v] is the minimum cost to reach vertex v from the
source node.

Algorithm Steps:

164
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

1.​ Initialize all nodes with an infinite distance except
the source node (distance = 0).

2.​ Place all nodes in a priority queue.
3.​ Select the node with the smallest distance value.
4.​ Update distances to all adjacent nodes using the

formula above.
5.​ Repeat until the destination node is reached or all

nodes are visited.

Formula for Distance Update:

d[v]=min⁡(d[v],d[u]+w(u,v))

This ensures that each node always holds the shortest
possible distance from the source.

Use in Quick Path:​
Dijkstra’s algorithm is applied to compute the shortest base
path between user-selected start and end points. The
resulting distance is then enhanced by additional parameters
such as toll, fuel cost, and travel time.

3.2 K-Shortest Path Algorithm (Yen’s Method)

Purpose:​
While Dijkstra’s algorithm returns only one shortest path,
users often need alternative routes (for avoiding congestion
or toll roads).​
The K-Shortest Path algorithm generates multiple feasible
paths ordered by their total cost.

Conceptual Formula:​
Given graph G(V,E), source node sss, and destination node
ttt,​
the algorithm finds paths P1,P2,...,Pk such that:

cost(P1)≤cost(P2)≤...≤cost(Pk)

where cost(Pi)=∑(u,v)∈Piw(u,v).

Algorithm Steps:

1.​ Use Dijkstra’s algorithm to find the first shortest
path P1​.

2.​ For each node in P1, temporarily remove edges and
compute the next shortest path using a modified
Dijkstra.

3.​ Store all alternative paths and sort them by total
cost.

4.​ Repeat the process until K paths are found or no
further alternatives exist.

Use in Quick Path:​
The Quick Path solution uses this algorithm to provide three
different route options:

●​ Shortest Distance Route (based on distance)
●​ Fastest Route (based on time)
●​ Most Economical Route (based on cost and fuel

efficiency)

These options appear in a scrollable interface similar to
Google Maps, helping users make informed choices.

IV. RESULT ANALYSIS
The Quick Path solution was evaluated by implementing
both Dijkstra’s Algorithm and K-Shortest Path Algorithm
(Yen’s method) to analyze their efficiency in route
optimization.
The testing environment consisted of 25 nodes and 60 edges
representing Indore city roads. Each edge had attributes such
as distance (in km), fuel cost (in ₹), and average travel time
(in minutes).
4.1 Comparison Table

Table 2: Comparison of Dijkstra’s Algorithm and
K-Shortest Path Algorithm

Criteria Dijkstra’s
Algorith
m

K-Shortest
Path
Algorithm

Inference

Execution
Time (ms)

38 ms 82 ms Dijkstra’s is faster
for a single route;
K-Shortest
requires extra
iterations.

Routes
Generated

1 3 K-Shortest
provides multiple
options for user
flexibility.

Accuracy (%) 98.70% 96.80% Both are accurate,
though Dijkstra’s
is slightly more
precise for
shortest distance.

User
Flexibility

Low High K-Shortest
enhances
decision-making
by suggesting
alternate paths.

Cost
Estimation
Accuracy (%)

91.30% 94.10% K-Shortest allows
more refined cost
calculations for
different routes.

Average
Computation
Load

Low Moderate K-Shortest
consumes more
memory due to
multiple route
storage.

165
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

Criteria Dijkstra’s
Algorith
m

K-Shortest
Path
Algorithm

Inference

Use Case Best for
simple,
static
route
search

Best for
dynamic,
user-centri
c, smart
navigation

4.2 Comparative Analysis of Dijkstra and K-Shortest Path
Algorithms

Fig. 3. Category-Wise Comparison Chart (Bar Chart)

Fig. 4. Performance Trend Graph (Line Graph)

The graph and chart above compare the performance of
Dijkstra’s Algorithm and K-Shortest Path Algorithm used in
the Quick Path navigation system.

●​ Computation Time: Dijkstra performs faster (40
ms) because it calculates only one shortest path.
K-Shortest takes slightly more time (65 ms) since it
generates multiple optimized routes.

●​ Cost Efficiency: K-Shortest achieves higher
efficiency (85%) as it considers tolls and fuel costs,
while Dijkstra (45%) only focuses on distance.

●​ Accuracy: K-Shortest provides more accurate and
realistic results (92%) due to multi-parameter
optimization, compared to Dijkstra (80%).

●​ User Flexibility: K-Shortest scores 5/5 for offering
multiple route choices, while Dijkstra scores 2/5
since it gives a single route.

V. FUTURE SCOPE

Integration with Real-Time Traffic APIs: The system can be
enhanced by integrating live traffic data from sources like
Google Traffic or city IoT sensors. This will allow the
algorithm to adapt routes dynamically based on congestion,
accidents, or road closures.

Machine Learning-Based Route Prediction: Implementing
predictive analytics and ML models can help forecast travel
time and suggest routes based on user patterns, seasonal
traffic trends, and historical data.

IoT and Smart City Connectivity: In future smart city
frameworks, the system can connect with IoT-enabled traffic
lights, parking sensors, and public transport schedules to
offer more intelligent navigation.

Enhanced Multi-Objective Optimization: Expanding the
optimization criteria beyond distance, time, and cost to
include parameters such as carbon emissions, toll avoidance,
and road safety ratings can make routing more sustainable
and user-centric.

Voice and Gesture-Based Interfaces: To improve
accessibility, especially for on-the-go users, the navigation
system could include voice command or gesture-based
control features with multilingual support.

Augmented Reality (AR) Navigation: AR-based navigation
overlays can be added for real-world route visualization
through smartphone or smart glasses, enhancing user
engagement and accuracy.

Cloud-Based Data Storage and Analytics: Storing route and
user data on cloud platforms can support scalable analytics,
performance benchmarking, and AI-based route
improvements.

Bilingual and Regional Expansion: Expanding beyond
Hindi-English support to other Indian languages can make
the system more inclusive and locally adaptable.

VI. CONCLUSION
The Quick Path-Smart Road Finder idea effectively
illustrates how modern web-based tools and algorithmic
logic might enhance town routing..The algorithm
successfully calculates many optimised routes by combining
Dijkstra's Algorithm and K-Shortest routing methods, giving
clients the ability to select one that corresponds to cost, time,
and distance. While database integration and dynamic map
visualisation ensure accuracy alongside user engagement,
bilingual support (in Hindi and English) increases
accessibility for a larger audience. The system simplifies
travel anxiety or advocates data-driven mobility by offering

166
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

a workable solution to frequent commuting issues in
expanding cities like Indore in India. 24-hour traffic updates,
artificial intelligence-driven models for predictions, as well
as internet of things (IoT) connectivity are possible future
additions to the solution that could promote Smart City
projects and the goal of digitising India.

REFERENCES
[1]E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.
 https://eudml.org/doc/131436
[2]T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed., MIT Press, 2009.
https://mitpress.mit.edu/9780262033848/introduction-to-algorithms/
[3]S. R. Biradar, “Smart City Navigation Using Shortest Path Algorithms,”
IJARCS, 2018.
https://ijarcs.info/index.php/Ijarcs/article/view/6030
[4]A. Sharma and R. Patel, “Implementation of K-Shortest Path Algorithms
for Real-Time Traffic Navigation,” IJCA, vol. 175, no. 30, pp. 10–14, 2020.
https://www.ijcaonline.org/archives/volume175/number30/sharma-2020-ijc
a-920060.pdf
[5]M. Gupta and A. Agarwal, “Cost-Based Route Optimization in Urban
Areas Using Graph Theory,” IRJET, vol. 7, no. 8, pp. 563–567, 2020.
https://www.irjet.net/archives/V7/i8/IRJET-V7I875.pdf
[6]Government of India, “Indore Smart City Mission Report,” Ministry of
Housing and Urban Affairs, 2023.
https://smartcities.gov.in/upload/uploadfiles/files/Indore_Smart_City.pdf
[7]J. Singh, S. Fatima, and A. S. Chauhan, “Multi-Objective Travel Route
Optimization Using Genetic Algorithm,” IJISAE, vol. 11, no. 3, pp.
785–794, 2023.
https://ijisae.org/index.php/IJISAE/article/view/4122
[8]H. Daneshvar et al., “Designing a Hybrid Intelligent Transportation
System for Optimization of Goods Distribution Network Routing Problem,”
DMAME, vol. 6, no. 2, pp. 907–932, 2023.
https://dmame.ef.uns.ac.rs/index.php/dmame/article/view/430
[9]J. Chen et al., “Dynamic Routing Optimization in Software-Defined
Networking Based on a Metaheuristic Algorithm,” Journal of Cloud
Computing, vol. 13, Article 41, 2024.
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677
-024-00441-0
[10]S.-H. Huang et al., “A New Hybrid Algorithm for Solving the Vehicle
Routing Problem with Route Balancing,” International Journal of
Industrial Engineering and Management, vol. 14, no. 1, pp. 51–62, Mar.
2023.
https://ijiemjournal.uns.ac.rs/article/view/234
[11]A. Kumar and P. Mehta, “Cost-Based Route Optimization Models for
Urban Transport Systems,” International Journal of Transportation
Engineering and Management, vol. 10, no. 2, pp. 45–56, 2020.
[12]L. Yang, H. Chen, and X. Li, “MVC Frameworks for Scalable Web
Applications,” IEEE Software Engineering Letters, vol. 8, no. 2, pp. 85–92,
2019.
[13]K. Geebelen, J. Huybrechts, and M. Leroi, “Applying MVC Design to
Web-Based Intelligent Systems,” ACM Computing Review, vol. 15, no. 1,
pp. 31–37, 2020.
[14]Sharma, C., & Kate, V. (2014). ICARFAD: a novel framework for
improved network security situation awareness. International Journal of
Computer Applications, 87(19).

167
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

https://eudml.org/doc/131436
https://mitpress.mit.edu/9780262033848/introduction-to-algorithms/
https://ijarcs.info/index.php/Ijarcs/article/view/6030
https://www.ijcaonline.org/archives/volume175/number30/sharma-2020-ijca-920060.pdf
https://www.ijcaonline.org/archives/volume175/number30/sharma-2020-ijca-920060.pdf
https://www.irjet.net/archives/V7/i8/IRJET-V7I875.pdf
https://smartcities.gov.in/upload/uploadfiles/files/Indore_Smart_City.pdf
https://ijisae.org/index.php/IJISAE/article/view/4122
https://dmame.ef.uns.ac.rs/index.php/dmame/article/view/430
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-024-00441-0
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-024-00441-0
https://ijiemjournal.uns.ac.rs/article/view/2344

	
	UrbanTrail an Intelligent Multi-Route Navigation System for Smart Cities
	Akshay Jain
	I. INTRODUCTION
	II. LITERATURE SURVEY
	III. PROPOSED METHODOLOGY
	3.1 Dijkstra’s Algorithm
	3.2 K-Shortest Path Algorithm (Yen’s Method)

	IV. RESULT ANALYSIS
	V. FUTURE SCOPE
	VI. CONCLUSION

