

TimeSync: Efficient Timetable Management

Sakshi Yadav

Chameli Devi Group of Institutions, Indore, India
sy6127592@gmail.com

 Shriya Kale

Chameli Devi Group of Institutions, Indore, India
kaleshriya51@gmail.com

Dr. Manoj Agrawal

Chameli Devi Group of Institutions, Indore, India
manoj.agrawal@cdgi.edu.in

 Satyam Gupta
Chameli Devi Group of Institutions, Indore, India

satyamgupta.sg.1@gmail.com

Vishal Bhanopiya
Chameli Devi Group of Institutions, Indore, India

vishbhanopiya@gmail.com

 Madhu Sharma
 Chameli Devi Group of Institutions, Indore, India

madhu.sharma@cdgi.edu.in

 1
Abstract—Academic timetable generation is a significant

combinatorial optimization problem faced by educational
institutions globally. This paper presents an Efficient Timetable
Management System (ETMS) designed to automate and
optimize this process using classical scheduling algorithms. The
proposed system strictly avoids machine learning or artificial
intelligence approaches, focusing instead on a robust, scalable,
and transparent methodology. The core of the system employs
a priority-based greedy assignment algorithm coupled with a
comprehensive, rule-based conflict-checking engine and a
backtracking mechanism. This approach effectively resolves
complex constraints, including faculty availability, classroom
capacity, student group coherence, and course prerequisites.
The system demonstrates that practical and efficient timetables
can be generated through effective software engineering and
foundational operations research principles, offering a
transparent and maintainable solution for academic
institutions. This paper discusses the system architecture, the
core scheduling algorithm, and simulated results, highlighting
its efficiency in constraint satisfaction and computation time.
Keywords for this article include: constraint satisfaction,
greedy algorithms, operations research, rule-based systems,
timetable scheduling.

Index Terms—Constraint satisfaction, greedy algorithms,
operations research, rule-based systems, timetable scheduling.

I. INTRODUCTION

The task of creating an academic timetable is a

recurring and complex challenge for universities and

colleges [1]. It involves assigning a set of courses, faculty,
and student groups to a limited number of time slots and
classrooms, all while satisfying a dense list of constraints.
This problem is well-known in computer science as being
NP-hard, meaning that finding a perfectly optimal solution
is computationally infeasible as the problem size (number of
courses, faculty, etc.) increases [2].

Many contemporary solutions attempt to solve this problem
using artificial intelligence (AI), machine learning (ML), or
metaheuristic approaches like Genetic Algorithms (GA) or
simulated annealing. While powerful, these methods can
often be computationally expensive, require large datasets
for training, and may operate as "black boxes," making it
difficult for administrators to understand why a particular
schedule was generated or to manually adjust it.

This paper presents an Efficient Timetable Management
System (ETMS) that deliberately avoids these AI/ML
paradigms. Instead, it focuses on the practical
implementation of classical computer science algorithms
and operations research principles. Our approach is built on
effective software engineering with a focus on transparency,
maintainability, and scalability. The core of our system uses
a priority-based greedy assignment strategy combined with a
robust rule-based conflict checking engine. This
methodology allows the system to build a valid, conflict-free
schedule step-by-step, prioritizing the most constrained
resources first.

This paper details the system's architecture, the specific
algorithms employed, and discusses its performance against
a baseline, demonstrating its viability as a practical solution
for academic institutions. The remainder of this paper is
organized as follows: Section II reviews related work in

221
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

mailto:kaleshriya51@gmail.com
mailto:satyamgupta.sg.1@gmail.com

non-AI-based timetabling. Section III details the system
architecture and core scheduling methodology. Section IV
presents and discusses the simulation results. Finally,
Section V provides the conclusion and outlines future work.

Fig. 1. Performance Comparison: Manual vs Algorithmic
Timetable Scheduling.

Table 1 : Comparative Analysis

 II. RELATED WORK

The field of automated timetabling has been an active area
of research for decades, with many reviews documenting the
search for smart and efficient planning solutions [3]. The
primary motivation for this research comes from the
significant and well-documented issues with traditional
manual scheduling. These manual methods are not only
time-consuming but are prone to numerous errors, struggling

to balance complex variables like faculty availability,
infrastructure limitations, and curriculum demands. These
persistent "challenges and practices" highlight the clear need
for more robust, automated systems [1].

Early automated approaches often relied on direct operations
research techniques. For instance, graph coloring models
have been widely used, where courses are nodes and an edge
exists between two courses if they cannot be scheduled
simultaneously (e.g., they share students or a faculty
member). The goal is then to "color" the graph with the
minimum number of colors (time slots).

Other classical approaches include constraint-satisfaction
problem (CSP) formulations, which have been successfully
implemented in modern university systems [5]. In this
model, the problem is defined by a set of variables (courses),
a domain of values for each variable (time slots/rooms), and
a set of constraints [5]. Backtracking algorithms are then
used to find a valid assignment for all variables. While
complete, basic backtracking can be inefficient for
large-scale problems. A similar and effective non-AI
approach involves using rule-based expert systems, which
leverage a predefined set of rules to build a valid schedule,
much like a human expert would [4].

Our work builds directly upon recent advancements in
practical, heuristic-based algorithms. Specifically, our
methodology is inspired by the "Priority-Based Greedy
Approach" [6]. This model identifies that not all courses are
equally difficult to schedule. Therefore, it prioritizes courses
based on their constraints (e.g., high student enrollment,
special lab requirements) and then assigns them using a fast,
greedy heuristic. This method is highly effective at finding a
"good-enough" solution that satisfies all critical (hard)
constraints in a fraction of the time required by exhaustive
search methods [6].

This work, therefore, integrates these foundational ideas. We
use a CSP model to define our problem [5], a rule-based
engine to check for conflicts [4], and a priority-based greedy
algorithm to build the schedule efficiently [6]. This
combined approach provides a fast, transparent, and
maintainable solution that satisfies all hard constraints,
which is often sufficient for administrative needs and avoids
the "black box" nature of complex metaheuristics.

III. METHODOLOGY AND SYSTEM ARCHITECTURE

The ETMS is designed as a modular system that separates
data input, constraint definition, and the core scheduling
logic.

A. System Architecture

The system's architecture, shown in Fig. 2, consists of three
primary layers:

222
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

1.​ Data & Constraint Layer: This layer serves as the
input for the system. It includes databases for:

●​ Courses: (ID, title, required credits,
student groups).

●​ Faculty: (ID, name, availability, courses
they can teach).

●​ Rooms: (ID, capacity, type, e.g., lab,
lecture hall).

●​ Constraints: Defined as a set of rules.
These are divided into Hard Constraints
(must not be violated, e.g., a faculty
member cannot be in two places at once)
and Soft Constraints (desirable, e.g., avoid
scheduling a class at 8:00 AM).

2.​ Core Scheduling Engine: This is the heart of the
system. It fetches the data and constraints and
executes the scheduling algorithm to produce a
timetable. Its components are detailed in the next
section.

3.​ Output & Reporting Layer: This layer presents
the generated timetable to the user. It provides
different views (by faculty, by room, by student
group) and highlights any unresolved conflicts or
soft constraint violations.

Fig. 2. System Architecture of the Efficient Timetable
Management System (ETMS).

B. Core Scheduling Algorithm

The scheduling process is driven by a Priority-Based
Greedy Algorithm. The workflow operates as follows:

1.​ Prioritization: The system first sorts all courses to
be scheduled. The priority is determined by how
"difficult" a course is to schedule. This can be a
composite score based on factors like:

●​ High student enrolment (requires large
rooms).

●​ Limited faculty availability.

●​ Special room requirements (e.g., science
labs).

●​ Courses that are prerequisites for many
other courses.

2.​ Greedy Assignment: The algorithm iterates
through the prioritized list of courses. For the
highest-priority course, it iterates through all
available time slots and all available rooms.

3.​ Conflict Checking: For each potential (course,
time slot, room) assignment, the Rule-Based
Conflict Engine is invoked. This engine checks the
assignment against all defined hard constraints:

●​ Faculty Conflict: Is the assigned faculty
member already teaching another class at
this time?

●​ Room Conflict: Is the room already in use
at this time?

●​ Student Group Conflict: Are the students
in this course already scheduled for
another class at this time?

●​ Room Capacity: Does the room's capacity
meet the course's enrollment?

●​ Faculty Availability: Is the faculty member
available to teach at this time?

4.​ Allocation: The first (time slot, room) pair that
passes all conflict checks is assigned to the course.
This is the "greedy" nature of the algorithm. The
assignment gets recorded, and the system moves to
the next course in the priority list.

5.​ Backtracking (Limited): If the algorithm reaches
a state where a course cannot be scheduled (i.e., no
(time, room) pair satisfies the constraints), a simple
backtracking mechanism is triggered. It will

223
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

"unschedule" the previous course that was
successfully scheduled and attempt to place it in a
different valid slot. This opens up its original slot
for the course that failed. This process is limited in
depth to prevent excessive computation time.

IV. CONCLUSION

This paper presented an Efficient Timetable Management
System (ETMS) based on classical scheduling algorithms,
deliberately avoiding AI and ML. The system's core, a
priority-based greedy algorithm with a robust rule-based
conflict checker, proved highly effective in solving a
complex, real-world scheduling problem. The simulation
results showed that our system achieved a 100% schedule
completion rate, satisfying all hard constraints, and
significantly outperformed a baseline FCFS approach in
minimizing soft constraint violations.

This work demonstrates that practical, transparent, and
maintainable systems can be built for complex problems
without resorting to computationally expensive or "black
box" AI solutions.

Future work will focus on two main areas. First, we plan to
implement a simple local search optimization module that
runs after the initial greedy schedule is generated. This
module will attempt to swap time slots for
already-scheduled classes to further reduce the number of
soft constraint violations. Second, we will develop a
web-based graphical user interface (GUI) to allow
administrators to input constraints and manually adjust the
final, generated timetable.

ACKNOWLEDGMENT

The authors wish to thank their colleagues in the
Department of Computer Science & Engineering at the
Chameli Devi Group of Institution for their valuable
feedback and for providing the anonymized data used in the
simulation.

REFERENCES

[1] A. G. Shelar, M. D. Gurav, R. S. Masaye, and M. R. Bodke, “Time
Table Management in Educational Institutions-Challenges and Practices,”
Int. J. Multidiscip. Res. (IJFMR), vol. 7, no. 4, 2025.
[2] S. Kadav, A. Patil, A. Tanwar, and S. Takale, “Time Table Scheduling
System,” MIT UNIVERSITY'S-ABHIVRUDDHI J., vol. 2, no. 01, pp.
14–16, Jun. 2022.
[3] S. Kelkar, S. Chile, D. Bandal, K. Keskar, and W. Sirsat, "A Review of
Automated Timetable Scheduler for Colleges: A Smart Solution for
Efficient Planning," Int. J. Creat. Res. Thoughts (IJCRT), vol. 13, no. 2,
Feb. 2025.
[4] R. M. T. de Lima, “A rule-based expert system for university
timetabling,” in Proc. 12th Int. Conf. Ind. Eng. Oper. Manage., Istanbul,
Turkey, 2022, pp. 1120–1129
[5] A. A. A. E. O. O. O. A. M. et al., "A Constraint-Based Timetabling
System for a University," Int. J. Inf. Technol. Comput. Sci., vol. 14, no. 1,
pp. 22–31, Feb. 2022.
[6] S. R. S. and P. K., "A Priority-Based Greedy Approach for University
Course Timetabling," in Proc. 4th Int. Conf. Comput. Inf. Sci. (ICCIS), 202

Sakshi Yadav is currently pursuing the B.E. degree in
computer science and engineering from Chameli Devi
Group of Institutions, Indore, India, with an expected
graduation in 2027.
Her current research interests include Software Engineering,
and Web development.
Ms. Yadav is a student member of the IEEE.

Satyam Gupta is currently pursuing the B.E. degree in
computer science and engineering from Chameli Devi
Group of Institutions, Indore, India, with an expected
graduation in 2027.
His current research interests include Database
Management, Algorithm development.
Mr. Gupta is a student member of the IEEE.

Shriya Kale is currently pursuing the B.E. degree in
computer science and engineering from Chameli Devi
Group of Institutions, Indore, India, with an expected
graduation in 2027.
Her current research interests include software testing,
algorithm analysis.
Ms. Kale is a student member of the IEEE.

Vishal Bhanopiya is currently pursuing the B.E. degree in
computer science and engineering from Chameli Devi
Group of Institutions, Indore, India, with an expected
graduation in 2027.
His current research interests include software engineering,
web development.
Mr. Bhanopiya is a student member of the IEEE.

Manoj Agrawal received the M.E. and Ph.D. degrees in
computer science engineering. He has over 22 years of
experience.
He is currently an Associate Professor with the Department
of Computer Science & Engineering at Chameli Devi Group
of Institutions, Indore, India.

Madhu Shamra received the M.E. degrees in computer
science and engineering and is currently pursuing Ph.D. in
computer science.
She is currently an Assistant Professor with the Department
of Computer Science & Engineering at Chameli Devi Group
of Institutions, Indore, India.

224
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025)

	I. INTRODUCTION
	 II. RELATED WORK
	III. METHODOLOGY AND SYSTEM ARCHITECTURE
	IV. CONCLUSION
	This paper presented an Efficient Timetable Management System (ETMS) based on classical scheduling algorithms, deliberately avoiding AI and ML. The system's core, a priority-based greedy algorithm with a robust rule-based conflict checker, proved highly effective in solving a complex, real-world scheduling problem. The simulation results showed that our system achieved a 100% schedule completion rate, satisfying all hard constraints, and significantly outperformed a baseline FCFS approach in minimizing soft constraint violations.
	This work demonstrates that practical, transparent, and maintainable systems can be built for complex problems without resorting to computationally expensive or "black box" AI solutions.
	Future work will focus on two main areas. First, we plan to implement a simple local search optimization module that runs after the initial greedy schedule is generated. This module will attempt to swap time slots for already-scheduled classes to further reduce the number of soft constraint violations. Second, we will develop a web-based graphical user interface (GUI) to allow administrators to input constraints and manually adjust the final, generated timetable.
	ACKNOWLEDGMENT

