

Intelligent Waste Bin Monitoring with IoT Integration

Aastha Rathore

Dept. of CSE

*Chameli Devi Group of Institutions
Indore, India*

Avani Singh Raghuvanshi

Dept. of CSE

*Chameli Devi Group of Institutions
Indore, India*

Ayush Katare

Dept. of CSE

*Chameli Devi Group of Institutions
Indore, India*

Dr. Manoj Agrawal

Dept. of CSE

*Chameli Devi Group of Institutions
Indore, India*

manoj.agrawal@cdgi.edu.in

Prof. Jitendra Sheetlani

Dept. of CSE

*Chameli Devi Group of Institutions
jitendrasheetlani@cdgi.edu.in*

Abstract—The continuous increase in waste generation has led to overflowing public trash bins in several cities, resulting in unclean air, dirty surroundings, and environmental contamination. The unpleasant odor from uncollected garbage poses significant health risks to humans. To address this issue, ensuring a clean and healthy environment is essential. This project proposes the development of a smart recycling bin equipped with ultrasonic sensors to detect the level of waste within the bin. The system integrates an embedded device that connects to a web server, enabling real-time monitoring of bin status across the city. Once a bin reaches its maximum capacity, data is automatically transmitted to waste collection authorities. The garbage collectors are instantly notified via their mobile devices through an Internet of Things (IoT)-based platform, prompting immediate action to empty the bins. This solution aims to enhance urban sanitation, streamline waste management, and promote sustainable practices by leveraging IoT technology.

Index Terms—Smart Recycling Bin, Waste Management, IoT, Ultrasonic Sensor, Real-time Monitoring, Embedded Systems, Urban Sanitation, Environmental Sustainability.

I. INTRODUCTION

Appropriate garbage disposal is essential for sustainable and healthy development. The open dumping of waste and the collection of rubbish from open dumpsites pose significant health risks, including skin infections and chronic diseases. As the world's population continues to grow, the amount of waste generated increases daily, leading to overflowing garbage bins that create unsanitary environments and emit unpleasant odors. These conditions encourage the spread of bacteria and viruses, contributing to various illnesses.

To address these challenges, we propose the development of a smart recycling bin — a technologically advanced alternative to traditional waste bins. The primary goal is to reduce the amount of garbage ending up in landfills by improving waste management practices. Smart bins are equipped with sensors, connectivity features, and data analytics tools that enhance the efficiency, convenience, and sustainability of the waste collection and recycling process for both consumers and businesses.

Our project focuses on implementing a system that ensures the immediate cleaning of dustbins once they are full. To maintain a high level of cleanliness, it is crucial to empty the bins promptly. The Internet of Things (IoT) plays a vital role in this system, connecting physical objects — such as sensors and embedded devices — to the internet for seamless data exchange.

The smart bin uses an ultrasonic sensor to monitor the garbage level inside. When the waste reaches a predefined threshold, the system triggers an alert, notifying the waste management authorities in real-time. This notification is sent to their mobile devices, allowing them to respond quickly and empty the bins without delay.

Fig. 1: Smart Bins

II. LITERATURE REVIEW

The paper [2] Smart Garbage Management in Smart Cities using IoT proposed a method as follows. Our day is one of smart cities, where everything is organized and methodical. We are dealing with the issue of a fast growing population. Urban migration has increased dramatically in recent years. As a result, there is now more trash everywhere. The community becomes polluted when trash is dumped in public areas. Numerous severe illnesses could be brought on by it for the local population. The assessment of the impacted region will be embarrassed by this. We must address the issue methodically in order to minimize waste and preserve hygiene. We offer an intelligent rubbish waste management solution to

this waste issue. This study suggests an Internet of Things (IoT)-based smart system for clean trash management that uses sensory sensors to determine the amount of rubbish in dustbins. The microcontroller in this system serves as a visual link between the sensor and the Internet of Things system. Under the Unnat Bharat project, we have worked for a village in a local village in Uttar Pradesh, and the outcomes have been encouraging.

This paper [3] follows One of the main issues facing densely populated metropolitan areas is proper garbage management. Because of environmental contamination, living a healthy, sustainable life in an urban setting is becoming more and more challenging. Issues like trash overflow that seriously damage our ecosystem arise as a result of improper waste management practices. Numerous diseases spread in epidemic form as a result of polluted environments. Long-term development is hampered by waste management in both developed and developing nations. One of the main issues facing densely populated metropolitan areas is proper garbage management. Because of environmental contamination, living a healthy, sustainable life in an urban setting is becoming more and more challenging. Issues like trash overflow that seriously damage our ecosystem arise as a result of improper waste management practices. Numerous diseases spread in epidemic form as a result of polluted environments. Long-term development is hampered by waste management in both developed and developing nations. The system displays the percentage of waste that is filled in the garbage can on a liquid crystal display (LCD) and offers the capability of continuous waste status monitoring. When the trash can is full, the communication system's worldwide system for mobile communications (GSM) module will notify the appropriate authority to pick up the waste. Because it uses less labor, prevents trash from spilling, saves time, is more cost-effective, and is entirely automated, the suggested waste management system is far more effective than any other traditional waste management system. This paper[4] proposes waste must be disposed of properly. Living a sustainable and healthy life is

becoming more and more challenging every day. Everyone is so focused on their work that they fail to see that if the trash cans are not emptied on time, it will be unsanitary. Its disagreeable odor contributes to the spread of numerous harmful infections and human diseases. As a result, trash spreads, which leads to unhealthy surroundings.

The Smart Dustbin for Household was created to prevent trash spills and to make the house cleaner. An ordinary trash can with hardware components integrated for more effective use is called a "smart dustbin." This IoT-based Smart trash can for Household project is a highly creative system that will assist in keeping an eye on the rubbish that is gathered in the trash can. The amount of trash gathered in the trash cans is tracked and reported by this system. The amount of trash gathered in the bins is detected by ultrasonic sensors.

This system[5] makes use of a microcontroller, LCD screen, and Zigbee methodology for sending data. Ultrasonic sensors are used to detect the level of garbage collected in the bins. The LCD screen is used to display the level of garbage collected in the bins.

This paper[6] focuses on maintaining cleanliness and cultivating a healthy atmosphere. The amount of rubbish in the trash can is detected by the ultrasonic sensor. For city cleanliness, we developed an inexpensive embedded device that enables the web server to track each street's location. It's easy to determine if a trash can is full. Information is automatically delivered to the bin collector as soon as the level reaches a certain maximum. The bin collector will immediately begin cleaning up the city after using the internet to access their mobile phone.

This paper[7] ensures to reduce the risk to the environment, waste segregation, transportation, and transfer must be properly supervised. Waste estimation is most effectively recognized when it is isolated. The traditional approach to physically separating the garbage involves more time, money, and human effort. This article suggests a simple and affordable method of tracking and sorting household waste: a waste tracking system with an integrated waste sorting mechanism. Its purpose is to separate

household waste into three categories: glass, plastic, and metals. The tracking system notifies the server of the amount of waste generated by each household following segregation. Accordingly, a good waste management framework is useful for recycling practices for a cleaner ecosystem with appropriate waste management activities.

III. SYSTEM ARCHITECTURE

Dustbin layer:- This layer consists of smart bins equipped with ultrasonic sensors and microcontrollers. The ultrasonic sensors continuously monitor the garbage level inside the bins. Once the bin reaches a certain threshold, the microcontroller processes this data and sends it to the server layer through an internet connection. This layer ensures real-time data collection and transmission.

Server layer:- The server layer acts as a central hub that receives data from all the smart bins. It processes the incoming data, determines which bins need immediate attention, and stores the information in a database. This layer also runs the algorithms for data analysis and sends notifications to the client layer when a bin reaches its full capacity.

Client layer:- The client layer includes mobile or web applications used by waste management authorities. It receives real-time notifications and displays the status of each bin on a user-friendly interface. The authorities can track bin locations, check their fill levels, and plan optimized collection routes. This layer facilitates prompt actions, ensuring that bins are emptied as soon as they are full[9].

IV. METHODOLOGY

After reviewing various existing garbage monitoring systems, we have designed a smart dustbin for household use, leveraging IoT technology. The system integrates hardware and software components to ensure seamless waste level monitoring and real-time data transmission. The methodology involves the following steps:

Fig. 2: System Architecture

Fig. Shows the architecture of system

A. Hardware Implementation

- **ESP32 Microcontroller:** Acts as the central control unit, offering Wi-Fi and Bluetooth capabilities for data communication.
- **Ultrasonic Sensor:** Continuously measures the garbage level within the bin by emitting sound waves and calculating the distance to the waste surface.
- **Buzzer:** Provides an audio alert when the bin reaches its maximum capacity.
- **Breadboard & Connecting Wires:** Used to build and test circuits, ensuring proper hardware configuration.

B. Software Integration

- The ESP32 microcontroller collects data from the ultrasonic sensor and transmits it to the server layer using Wi-Fi.
- The server processes the data and determines if a bin needs to be emptied.
- Real-time alerts are sent to the client layer (mobile or web application), notifying waste management authorities.

C. Smart Bin Features

- **Automatic Operation:** Touchless and sensor-based for hygienic waste disposal.
- **Germ Killing:** Equipped with UVC technology to eliminate germs and bacteria.
- **Odor Control:** Integrated deodorizer to eliminate foul odors.
- **Display Panel:** Smart indicators show the current waste level.

- **Energy Efficient:** Low power consumption, using less energy than a light bulb.

D. Remote Monitoring and Control

- Smart bins are integrated with Recycle Bin UltraEye waste level sensors.
- The system is linked to the Recycle Bin Smart Assist app, allowing real-time remote monitoring of waste levels.
- Authorities can track bin status, plan optimized collection routes, and respond quickly to over-flowing bins.

V. IMPLEMENTATION

The implementation of the smart recycling bin system involves the following steps:

A. Hardware Setup

- Assemble the ESP32 microcontroller on a breadboard.
- Connect the ultrasonic sensor to the ESP32 for distance measurement.
- Integrate the buzzer for audio alerts.
- Ensure all components are connected using appropriate wires, with stable power supply.

B. Firmware Development

- Program the ESP32 using Arduino IDE.
- The code includes logic for reading ultrasonic sensor data, determining waste levels, and transmitting this data via Wi-Fi.
- Implement a trigger system that activates the buzzer and sends HTTP requests to the server when the bin is full.

C. Server Configuration

- Set up a web server using Node.js or Python Flask.
- Create REST APIs to receive data from the ESP32.
- Store bin data (location, waste level, timestamp) in a database like MySQL or MongoDB.

D. Client Application

- Develop a mobile/web app using React or Angular.
- Integrate Google Maps API to show bin locations.
- Implement real-time notifications using WebSocket.

E. Testing and Deployment

- Test sensor accuracy by adding various garbage levels and checking sensor responses.
- Ensure seamless communication between hardware, server, and client.
- Deploy the server on cloud platforms (AWS, Heroku).

VI. CONCLUSION AND FUTURE SCOPE

The smart recycling bin system represents a significant step toward sustainable waste management by integrating IoT technology for real-time monitoring and prompt waste collection. This innovative approach reduces overflowing bins, minimizes health risks, and promotes urban cleanliness. While the initial implementation cost may be relatively high, the long-term benefits — including optimized collection routes, reduced environmental pollution, and efficient resource allocation — far outweigh the investment. Widespread adoption of this technology, particularly in developing nations, can foster healthier cities and support global sustainability efforts. As advancements in smart technologies continue, the future of waste management appears more promising than ever. In the future, This article incorporates IOT solutions to implement a system that provides the municipal council with a system that better equips them to handle the garbage problem in a smart city. Every party is interacting with this system, that is the citizens, the workforce, and the admins. Another area which can be improved is instead of each bin connecting to an access point to communicate with the server, bins can communicate with each other and connect to an access point through the main hub. This method may reduce network costs and make the network process more efficient. After successful implementation we will

try to deploy this project to Indore city after collaborating with Indore Municipal Corporation (IMC) Indore. After successful implementation we will try to embed it with a solar panel and remove the battery from it.

REFERENCES

- [1] "IIT-Madras startup develops smart dustbin system to prevent COVID-19 spread," *Economic Times*, 2020. [Online]. Available: <https://m.economictimes.com/small-biz/startups/newsbuzz/iit-madras-startup-develops-smart-dustbin-system-to-prevent-covid-19-spread/articleshow/75407059.cms>
- [2] Dr. Ihtiram Raza Khan, Mehtab Alam and Anuj Razdan, "Smart Garbage Monitoring System Using IOT," *SSRN Electronic Journal*, February 2021.
- [3] Minhaz Uddin Sohag and Amit Kumer Podder, "Smart Garbage Management System for a Sustainable Urban Life: An Io Based Application," *Science Direct*, July 2020.
- [4] Mrs. Pallavi Nehete, Dhanshri Jangam, Nandini Borne, Prajakta Bhoite and Shalaka Jadhav, "Garbage Management using Internet of Things," *International Conference on Electronics, Communication and Aerospace Technology (ICECA)*, March 2018.
- [5] Ashima Bajaj and Sumantha Reddy, "Garbage Monitoring System using (IOT)," *International Journal of Pure and Applied Mathematics*, November 12, 2017.
- [6] V. Jain, S. Chouhan, V. Kate, N. Nigam and S. Bhalerao, "Enhancing Data Security and Data Sensitivity: Leveraging the Synergy of Blockchain Artificial Intelligence," 2023 IEEE International Conference on ICT in Business Industry Government (ICTBIG), Indore, India, 2023, pp. 1-8, doi: 10.1109/ICTBIG59752.2023.10456105.
- [7] M. Karthik, L. Sreevidya, R. Nithya Devi, M. Thangaraj, G. Hemalatha, and R. Yamini, [Authorship contributions: M. Karthik: Conceptualization, Methodology, Supervision; L. Sreevidya: Data curation; R. Nithya Devi: Writing – original draft; M. Thangaraj: Visualization; G. Hemalatha: Validation, Investigation; R. Yamini: Writing - review & editing].
- [8] A. S. and J. A. P. K., [The manuscript. A.S. and J.A.P.K. conducted the final analysis, with substantial input from A.S].
- [9] Rai, E., Kumari, T., & Dorji, P., "Smart Dustbin for Household Using Internet of Things (IoT)," *Project Report, School of Information Technology, SRM University Sikim, Tadong, Gangtok, East Sikkim – 737102*, 2022.
- [10] "Smart Dustbin," [Online]. Available: <https://www.slideshare.net/slideshow/smart-dustbin-147604412/147604412>
- [11] [Image Reference]. [Online]. Available: <https://images.app.goo.gl/Shg9UgQZx3f4BmN47>