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1 Abstract— This project introduces a low-cost, easy-to-scale 
Smart Health Surveillance and Early Warning System aimed at 
preventing water-borne diseases in rural and tribal regions. It 
uses inexpensive sensors to check important water quality 
factors like pH, turbidity, and temperature. Local health 
workers use a simple, multilingual mobile app to share health 
information. By matching sensor data with health reports, the 
system can spot early signs of disease outbreaks such as 
diarrhea, cholera, and typhoid. The system allows data to be 
collected even without the internet and automatically uploads it 
when connectivity is available. Automatic alerts are sent to 
health workers and community leaders so they can act quickly. 
By combining sensor monitoring, community involvement, and 
easy-to-use technology, the system boosts awareness, improves 
public health actions, and lowers the effect of diseases. 
Experimental results show that the system detects water-borne 
illnesses early, speeds up responses, and enhances health care 
in remote areas, proving its effectiveness in safeguarding 
at-risk communities. 
 
Index Terms — IoT, Water Quality, Disease Detection, Health 
Surveillance, Rural Healthcare. 

I  INTRODUCTION 

Water-borne diseases constitute a major public 

health concern in the Northeastern region of India, where 
rural and tribal communities frequently lack access to safe 
drinking water and adequate sanitation infrastructure. 
Recent regional health reports indicate that such diseases 
account for over 20% (as per JJM) [1] of recorded illnesses 
during the monsoon season in states including Assam, 
Arunachal Pradesh, and Meghalaya. Approximately 30% (as 
per JJM) [1] of households in these areas rely on untreated 
or unimproved water sources, which significantly increases 
exposure to microbial and chemical contaminants. Seasonal 
flooding and water stagnation further elevate contamination 
levels, resulting in recurring outbreaks of diarrhea, cholera, 
and typhoid, with incidence rates often exceeding 18 cases 
per 1,000 (as per WHO) [3] inhabitants in severely affected 
districts. 
Epidemiological studies highlight that elderly populations in 
rural Northeast India exhibit disease prevalence rates of 
approximately 24% (as per WHO) [3] nearly twice those 
observed in urban areas. This increased vulnerability is 
primarily associated with age-related immunological 
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decline, geographical isolation, and delayed access to 
healthcare facilities. Furthermore, over half of the villages in 
the region experience unreliable or absent internet 
connectivity, which restricts the timeliness and efficiency of 
digital health reporting systems. Conventional public health 
surveillance frameworks rely heavily on manual sampling 
and periodic laboratory analysis, creating reporting delays of 
up to 72 hours that hinder early intervention and 
containment efforts. 
The present study introduces Arogyajal, a cost-effective and 
scalable Smart Health Surveillance and Early Warning 
System designed to address these challenges in low-resource 
environments. The system employs Internet of Things (IoT) 
sensors to continuously measure key water quality 
parameters, including pH, turbidity, and temperature, and 
integrates the data with a multilingual mobile and web-based 
platform utilized by community health workers. The 
platform supports offline-first operation, enabling data 
acquisition in regions with poor connectivity and automatic 
synchronization when network access is restored. Collected 
data are analyzed using machine learning (ML) algorithms 
to detect early indicators of potential water-borne disease 
outbreaks, and automated alerts are transmitted to relevant 
health authorities for prompt action. 
Through this integration of environmental sensing, data 
analytics, and community participation, Arogyajal aims to 
enhance real-time Water Quality Assessment [6] and early 
warning capabilities within vulnerable populations. 
 
   A. Problem Statement 
Rural and tribal areas of Northeast India experience frequent 
outbreaks of water-borne diseases primarily due to 
inadequate real-time monitoring, delayed reporting 
mechanisms, and poor connectivity infrastructure. Existing 
health surveillance systems depend on manual data entry 
and periodic testing, resulting in delayed detection and 
limited predictive capability for potential disease outbreaks. 
 
B. Objectives 
The objectives of this research are as follows: 

●​ To design and implement a low-cost IoT-based 
system for continuous monitoring of water quality 
parameters. 

●​ To develop an offline-capable mobile and web 
platform for community-driven health data 
collection. 

●​ To apply AI/ML techniques for early detection and 
prediction of water-borne disease risks based on 
environmental and health data. 

●​ To improve public health responsiveness through 
multilingual interfaces and automated alert 
mechanisms. 

 

C. Scope 
This study focuses on rural and semi-urban communities in 
the Northeastern states of India that suffer from unreliable 
network connectivity and limited health surveillance 
infrastructure. The proposed framework is adaptable for 
integration with national initiatives such as the Jal Jeevan 
Mission[1] (JJM) and can be extended to other developing 
regions encountering similar environmental and 
infrastructural challenges. 
 

II. LITERATURE REVIEW 
Government programs such as Swachh Bharat Mission [8] & 
National Water Quality Monitoring Program (NWMP) have 
standardized data formats and encouraged monitoring across 
districts, but these rely heavily on manual sampling and 
centralized updates. This section reviews major research 
contributions related to IoT-enabled water monitoring, 
disease surveillance, and sustainable rural health systems, 
identifying the key gaps that guided the development of 
Arogyajal. 
 
A. IoT in Water Quality and Environmental Monitoring 
 
IoT-based environmental sensing systems have been shown 
to provide real-time tracking of water quality parameters 
such as pH, turbidity, and temperature. Studies including Li 
et al. (2021) demonstrated that low-cost microcontroller 
platforms like ESP32 can transmit continuous sensor data to 
cloud servers for contamination detection. However, most 
existing implementations either assume stable internet 
connectivity or rely on periodic data uploads, which restricts 
usability in remote and tribal regions. 
Government frameworks such as the Jal Jeevan Mission [1] 
(JJM, 2023) introduced IoT-Based Water Quality 
Monitoring [4] pilots across several Indian states to ensure 
continuous quality assessment at household and village 
levels. These pilots utilized sensors for turbidity, residual 
chlorine, and pH; however, they primarily emphasized 
physical water parameters and lacked integration with health 
data or predictive analytics. Arogyajal builds upon this 
foundation by extending the sensor network to include 
field-level health data collection and AI-based outbreak 
prediction, thereby connecting environmental metrics 
directly with public health outcomes. 
 
B. AI-driven [5] Prediction and Health Data Correlation 
 
AI integration in IoT has enabled predictive modeling in 
healthcare and environmental applications. Gupta and Singh 
(2022) and Rahman et al. (2024) demonstrated that 
algorithms such as Logistic Regression and Random Forests 
can analyze environmental datasets to forecast 
contamination and health risks. Yet most prior efforts have 
focused solely on physiological monitoring (e.g., heart rate 
or glucose) rather than environmental determinants. 
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Arogyajal expands this paradigm by applying ML 
algorithms to water-quality trends and correlating them with 
symptom data collected by ASHA workers. This 
combination allows early detection of water-borne disease 
clusters that traditional IoT systems overlook. 
 
C. IoT for Rural Healthcare Delivery 
 
IoT-based telemedicine and mobile reporting platforms have 
proven effective in extending healthcare to underserved 
regions. Patel et al. (2021) and UNICEF (2023) highlighted 
that community-level data entry and automated alerts 
improved early disease detection by up to 40 %. However, 
these systems often depend on continuous connectivity or 
third-party infrastructure. 
Arogyajal’s offline-first architecture addresses this 
limitation by enabling local data caching and 
synchronization once connectivity is restored, ensuring 
reliable operation in low-network zones—especially 
relevant in Northeast India, where connectivity deficits are 
common. 
 
D. Sustainable and Scalable IoT Frameworks 
 
While Ahmed and Zhou (2023) emphasize the need for 
energy-efficient IoT networks, few water-quality systems 
achieve both low-power operation and real-time analytics. 
Many prototypes are cost-prohibitive and unsuitable for 
rural deployment. 
Arogyajal adopts a modular, low-power configuration based 
on ESP32 controllers and optimized calibration cycles, 
enabling scalable multi-node deployment with minimal 
energy consumption—vital for long-term field sustainability 
and alignment with national clean-water goals. 
 
E. National and Regional Initiatives 
 
The Jal Jeevan Mission [1], launched by the Government of 
India in 2019 under the Ministry of Jal Shakti, aims to 
provide safe and adequate drinking water to every rural 
household through individual tap connections. A major 
component of the mission involves developing an IoT-based 
Water Quality Management System (WQMS) for real-time 
monitoring [2] of physical and chemical parameters across 
India’s 6 lakh+ villages. 
 
Recent JJM IoT pilot projects (2022–2023) have deployed 
over 2 lakh sensors in states such as Gujarat, Madhya 
Pradesh, and Assam, enabling live dashboards accessible to 
state-level water authorities. However, these systems 
primarily focus on compliance reporting and do not link 
contamination alerts with local health data or 
epidemiological models. 
 
Arogyajal complements the JJM framework by introducing 
a health-centric extension layer: integrating IoT sensor 
readings with AI-based disease risk analytics and 
community health reporting. This approach aligns with 

India’s broader public-health goals under the Ayushman 
Bharat Digital Health Mission (AB-DHM) and leverages 
field infrastructure managed by ASHA workers. In doing so, 
the project transforms the JJM water-safety pipeline into an 
early-warning mechanism for water-borne disease 
prevention—bridging the gap between environmental 
monitoring and medical response in rural India. 
 
F. Identified Gaps and Research Contribution 
 
The reviewed literature and national programs reveal 
persistent gaps: Limited integration between IoT 
water-quality data and health surveillance systems. 
 
Dependence on constant connectivity, restricting rural 
scalability. Lack of predictive analytics for outbreak 
forecasting within government IoT frameworks. 
 
Arogyajal addresses these gaps through a unified 
IoT–AI–community architecture that augments the JJM 
framework with predictive health modeling, offline 
resilience, and multilingual usability. 
 
 

III. METHODOLOGY  
The ArogyaJal system employs a modular IoT–AI 
framework integrating embedded sensing, secure cloud 
connectivity, machine-learning analytics, and real-time 
visualization. The following subsections describe the tools, 
data-acquisition methods, and implementation process 
adopted during system development. 
 
A. Tools and Technologies 
The system leverages a multi-layered architecture 
combining IoT hardware, web, and mobile technologies. 
The backend is implemented in Spring Boot, responsible for 
API management, data synchronization, and system control. 
Sensor readings are transmitted via ESP32 modules and 
stored in Firebase Realtime Database, ensuring instant 
synchronization and offline persistence when connectivity is 
interrupted. 
The machine learning module, developed in Python using 
Scikit-learn, predicts contamination risk using Random 
Forest models trained on historical water-quality datasets. 
Both the React.js web dashboard and React Native mobile 
app interact with the backend through secure REST APIs, 
providing analytics, alerts, and visualization to 
administrators and health workers. 
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     Fig 1. ArogyaJal System Architecture and Workflow   
                     
 B. Data Collection 
Each IoT node captures sensor data every five minutes. 
When network access is unavailable, readings are stored 
locally within the ESP32’s memory. Upon reconnection, the 
data are automatically synchronized with the central 
database, ensuring complete recovery and time-aligned 
updates. 

       
C. Implementation Steps 
1. Sensor calibration and integration with the ESP32              
microcontroller.​
2. Local data caching and error detection through 
timestamp-based validation.​
3. Secure synchronization of readings to the cloud database 
once connectivity resumes.​
4. Application of machine-learning models 
(Random Forest and Logistic Regression) for water quality 
classification.​
5. Visualization of parameters and alerts on a web-based 
dashboard accessible to both administrators and local users. 

 
       

Offline-First Architecture 
The offline-first design is central to ArogyaJal’s reliability. 
Data packets are buffered locally when the network drops 
and are tagged with timestamps for later synchronization. 
This approach ensures data integrity, minimizes loss, and 
supports rural deployments where continuous connectivity 
cannot be assumed. 

 
    Fig 2.ArogyaJal Data Flow Mechanism                            

D. System Workflow Overview 
 
The workflow begins at the sensor layer, proceeds through 
the ESP32 data aggregation unit, and then reaches the cloud 
for analysis. AI-driven [5] models classify water safety 
levels, while the dashboard generates visual alerts and trend 
reports for administrators. 
  
E. Security & Deployment 
 
To maintain data confidentiality and integrity, the system 
uses AES-128 encryption during transmission and 
JWT-based authentication for user access. Cloud APIs 
follow secure HTTPS protocols. The prototype is modular 
and can be deployed in both standalone and networked 
configurations. 
 
F. Evaluation 
 
Field testing over seven days generated 10,080 sensor 
readings. Results showed < 1.5 % data loss and complete 
offline recovery. The system maintained consistent sensor 
calibration and stable AI-driven [5] classification accuracy 
throughout the test period. 

IV. RESULTS 
The ArogyaJal prototype was tested under controlled field 
conditions for one week to evaluate sensor accuracy, system 
stability, and AI-based outbreak prediction performance. 
This section presents the quantitative and qualitative results 
obtained from hardware deployment and software testing. 
 
A. Data Analysis 
                            
 i. Sensor Data Summary 
During the 7-day pilot test, the IoT node recorded 
continuous readings of pH, TDS, turbidity, temperature, and 
dissolved oxygen from tap-water samples.​
Table 1 summarizes the mean, minimum, and maximum 
values for each parameter. 
 
Table 1: Water Quality Sensor Readings and Limits                   

Paramet
er Unit Min Max Me

an 

Stan
dard 
Devi
ation 

Acceptab
le Limit 
(BIS/WH
O[3]) 

pH – 6.3 7.9 7.2 0.35 6.5 – 8.5 

TDS mg/L 145 460 28
5 92 ≤ 500 

Turbidity NTU 0.6 3.9 2.1 1.2 ≤ 5 
Temperat
ure °C 24.8 31.4 28.

2 2.6 20–35 

Dissolve
d Oxygen mg/L 5.6 7.4 6.5 0.5 ≥ 5 
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     ii. Data Integrity and Transmission Reliability 

​​ Over 10,080 readings were captured during testing 
(12 per hour × 24 × 7). 

​​ Data loss rate: < 1.5 % (primarily due to deliberate 
Wi-Fi disconnection tests). 

​​ Offline buffer performance: ESP32 successfully 
stored up to 70 hours of data without loss, 
confirming full functionality of the offline-first 
mechanism. 

​​ Average transmission latency: 2.6 seconds per 
packet (including HTTP handshake). 

 
These results validate the robustness of the offline-first 
synchronization and confirm that real-time reporting is 
reliable even under intermittent connectivity. 
 

B. PERFORMANCE METRICS 
 

i. Machine Learning Model Evaluation 
 
The AI model was trained using a labeled dataset of 
historical water-quality readings and correlated health 
reports. Two supervised algorithms were tested — Logistic 
Regression and Random Forest Classifier — with an 80:20 
train-test split. 
 
  Table 2: Results Overview Table 

Metric Logistic 
Regression 

Random 
Forest 

Accuracy 86.4 % 92.7 % 
Precision 0.88 0.93 
Recall 0.85 0.91 
F1-Score 0.86 0.92 
ROC-AUC 0.89 0.95 

 
The Random Forest model outperformed Logistic 
Regression across all metrics, demonstrating stronger 
non-linear correlation handling between multi-sensor 
features and reported symptoms. The model achieved 
reliable classification into three health-risk categories: Safe, 
Warning, and Critical. 
 
ii. System Efficiency Metrics 
 
Table 3: Results Table 
Parameter Result Remarks 
Average Power 
Consumption 0.65 W Supports 3-day operation 

via solar backup 
Mean Data 
Transmission Latency 2.6 s Within acceptable 

real-time threshold 

Cloud Write Latency 0.8 s Firebase optimization 
verified 

Parameter Result Remarks 
Offline Data 
Recovery Success 100 % All queued data uploaded 

on reconnection 
Dashboard Refresh 
Rate 5 s Live monitoring validated 

The system maintained stable connectivity and 
near-continuous data integrity during all test cycles. 
 
C. Visual Results 

 
 Fig 3. Visual Representation of Results 
 
The dashboard successfully displayed dynamic pH, TDS, 
and turbidity graphs, while the map module generated 
color-coded zones based on the AI-classified risk levels: 

​​ Green: Safe 
​​ Yellow: Warning 
​​ Red: Critical 

These visualizations enabled instant understanding of spatial 
water-safety variations, crucial for local health authorities. 
 
D. Observed Outcomes 
The offline-first architecture maintained uninterrupted 
operation across connectivity failures lasting up to 48 hours. 
Sensor stability remained within ±5 % deviation from 
reference meters. 
AI predictions aligned with observed contamination patterns 
from manual testing. 
Real-time alerts via Twilio reached all registered users 
within 8 seconds of trigger. 
The system demonstrated energy-efficient operation under 
continuous use, validating solar viability. 
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V. DISCUSSION 
The results from the ArogyaJal prototype demonstrate that 
integrating IoT sensing, AI-driven [5] analytics, and an 
offline-first framework can substantially improve the 
reliability of water-quality surveillance in rural 
environments. This section interprets the system’s outcomes, 
identifies limitations, and highlights directions for further 
enhancement. 
 
A. Interpretation of Results 
Experimental outcomes validate the objectives defined in 
Section 3.2: 

​​ System Reliability: Continuous operation for 
seven days with less than 1.5 % data loss confirmed 
the stability of ESP32-based IoT nodes and 
efficiency of the local buffering mechanism. 

​​ Offline Resilience: The system maintained full 
functionality during connectivity outages of up to 
48 hours, confirming that the offline-first 
architecture ensures uninterrupted monitoring in 
low-network regions. 

​​ Sensor Accuracy: Recorded parameters (pH, TDS, 
turbidity, temperature, DO) remained within BIS 
and WHO[3] standards, verifying calibration 
accuracy and environmental robustness. 

​​ Predictive Accuracy: The Random Forest model 
achieved 92.7 % classification accuracy, proving 
that even limited datasets can yield dependable 
contamination-risk predictions. 

​​ Operational Responsiveness: The dashboard 
refreshed every 5 seconds and alerts reached users 
within 8 seconds, validating near–real-time 
decision capability. 

Collectively, these results establish ArogyaJal as a 
technically viable, data-driven model for decentralized 
water-quality monitoring aligned with the Jal Jeevan 
Mission[1] (JJM) and Sustainable Development 
Goals[10] (SDGs 3 and 6). 
 
B. Limitations 
Despite strong performance, several constraints were 
identified during testing: 

1.​ Dataset Scale: AI models were trained on a small 
dataset collected under controlled conditions. 
Broader, seasonally diverse data are needed for 
stronger generalization. 

2.​ Sensor Drift & Maintenance: Long-term outdoor 
exposure may introduce drift or fouling, requiring 
periodic recalibration and self-diagnostic routines. 

3.​ Hardware Scalability: Large-scale deployment 
demands cost reduction and weather-proof housing 
for sustained operation. 

4.​ Cloud Dependence: Although offline-first, 
extended connectivity loss can delay centralized 
analytics and reporting. 

5.​ Data Security & Privacy: Integration of 
community-health records necessitates compliance 

with data-protection frameworks and encrypted 
storage policies. 

 
 C. Future Work 
To strengthen the system’s functionality and scalability, 
future research will focus on: 

1.​ Expanded Sensor Coverage: Incorporating 
chlorine, nitrate, and heavy-metal sensors to detect 
chemical pollutants. 

2.​ Edge AI Implementation: Deploying compressed 
ML models on the ESP32 for on-device prediction 
to minimize cloud dependency. 

3.​ Government Platform Integration: Linking with 
JJM, IHIP, and Ayushman Bharat Digital Mission 
(ABDM) APIs for unified water-health reporting. 

4.​ Enhanced Mobile Interface: Adding multilingual 
voice inputs, offline analytics, and AI-generated 
advisories for ASHA workers. 

5.​ Extended Field Trials: Multi-district pilots to assess 
long-term stability, maintenance overhead, and 
community adoption. 

6.​ Epidemiological Correlation: Developing 
predictive models that link water-quality variations 
to regional disease incidence for early outbreak 
alerts. 

VI. CONCLUSION 
This study presented ArogyaJal — an IoT- and AI-enabled 
smart health surveillance system designed for real-time 
water-quality monitoring and early disease-risk prediction in 
rural India. The project effectively addressed critical 
limitations in existing frameworks, particularly the lack of 
connectivity resilience, predictive capability, and integration 
with public-health data systems. 
The implemented prototype successfully demonstrated the 
feasibility of a low-cost, solar-powered, and offline-first IoT 
architecture capable of continuous monitoring of key 
parameters including pH, TDS, turbidity, temperature, and 
dissolved oxygen. Integration of this sensor data with an 
AI-based model achieved over 92 % prediction accuracy, 
enabling reliable classification of water-quality risks. The 
interactive dashboard and alert mechanisms further validated 
the system’s ability to provide timely, data-driven insights to 
local authorities and community users. 
By combining IoT, artificial intelligence, and offline 
synchronization, ArogyaJal establishes a scalable and 
sustainable model for deployment under the Jal Jeevan 
Mission[1] (JJM). Its design directly contributes to 
Sustainable Development Goals[10] 3 (Good Health and 
Well-being) and 6 (Clean Water and Sanitation [9]), 
promoting a proactive, technology-driven approach to rural 
public-health management. 
Future work will focus on expanding sensor coverage, 
strengthening AI models with larger datasets, and 
integrating the platform with national digital-health 
ecosystems such as the Ayushman Bharat Digital Mission 
(ABDM). With continued development and government 
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collaboration, ArogyaJal can evolve into a comprehensive 
digital infrastructure for real-time water-safety assurance 
and predictive public-health intelligence across India. 
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