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1Abstract— India’s agriculture faces growing 
challenges—unpredictable weather, soil degradation, and pest 
outbreaks—making yields uncertain. Traditional 
experience-based farming can no longer ensure food security or 
sustainability in today’s changing climate.An intelligent, 
data-driven approach is proposed to enhance agricultural 
productivity by integrating artificial intelligence with real-time 
environmental data. This approach utilizes advanced learning 
models to predict crop yield, optimize resource utilization, and 
generate explainable, localized recommendations. Advances in AI 
and IoT are transforming agriculture through real-time 
monitoring and intelligent analytics. By integrating sensor, 
weather, and satellite data with advanced learning models, this 
approach predicts crop yields, optimizes irrigation and resource 
use, and delivers explainable, localized 
recommendationsIntegrating live field data with intelligent 
analytics, AI-driven frameworks enable precision farming by 
boosting productivity, reducing waste, and empowering farmers 
with adaptive, region-specific, and sustainable decision support. 
This framework promotes sustainable, efficient, and informed 
farming practices suited to diverse agro-climatic 
conditions.AI-based yield prediction frameworks have the 
potential to transform agriculture into a more efficient, 
transparent, and resilient ecosystem. 

Index Terms–- Artificial Intelligence (AI), Internet of Things 
(IoT), Crop Yield Prediction, Precision Agriculture, Explainable 
AI (XAI), Machine Learning, Sustainable Farming, Cloud-based 
Decision Support. 

 

I. INTRODUCTION 

India’s agricultural sector, providing livelihoods to almost 

60% of the population, is at a crossroads in 2025—confronting 
mounting pressures from unpredictable weather, fragmented 
landholdings, soil degradation, and low technology uptake. 
Small and marginal farmers, who constitute over 80% of the 
farming community, face declining productivity and unstable 
incomes as climate change, erratic monsoons, and resource 
mismanagement intensify their vulnerabilities. For example, 
over 150 million hectares of farmland are now affected each 
year by severe droughts and floods, potentially reducing 
average yields by 12–24% without timely technological 
interventions. 

Despite the rapid pace of digital innovation elsewhere, most 
Indian farmers continue to operate on intuition and traditional 
practices due to a significant knowledge gap and limited access 
to modern advisory tools. Existing AI- or technology-based 
advisory platforms frequently fail to address local needs. They 
often deliver generic recommendations without considering 
microclimates, specific soil health, or the crop-diversity 
intrinsic to Indian agriculture. Their interfaces are typically in 
English, require stable internet connectivity, and lack 
user-friendliness, excluding a large rural audience with limited 
digital literacy and language barriers.Furthermore, while 
AI-based tools can make accurate predictions or identify risks, 
farmers widely distrust recommendations from black-box 
systems. A lack of transparency and actionable, context-rich 

280 
National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 

mailto:mokshajain240407@acropolis.in
mailto:mitushitawar240505@acropolis.in
mailto:nidhinigam@acropolis.in
mailto:vandanakate@acropolis.in


 
 

advice means these systems are rarely adopted at scale or fail 
to inspire confidence for action on the ground. 

To overcome these challenges, India urgently needs a robust, 
inclusive platform that combines explainable AI and affordable 
IoT. This platform must deliver personalized, real-time 
insights—predicting yields, optimizing irrigation and 
fertilization, and issuing early warnings—while also being 
multilingual, offline-capable, and low-cost to ensure mass rural 
adoption. Such a system should leverage data from 
open-source repositories, weather and soil APIs, and local 
sensors, ensuring both technical rigor and practical usability. 

The proposed AI-Powered Crop Yield Prediction and 
Optimization system seeks to bridge these structural gaps by 
offering a uniquely user-centric solution. It integrates powerful 
machine learning analytics with an accessible, regionally 
tailored interface—enabling even technologically 
inexperienced farmers to benefit from actionable 
recommendations in their local language and context. The 
platform’s design explicitly addresses known barriers: it offers 
transparency and explainability, so farmers understand why 
particular advice is given, and it can run offline, making it 
reliable even in areas with intermittent connectivity. 

By focusing on these core challenges—practical utility, local 
adaptability, language inclusion, trust through explainability, 
and cost-effectiveness—the proposed system aims to transform 
Indian agriculture from a practice of uncertainty into a model 
of precision and opportunity. This approach holds the potential 
to boost productivity by at least 10%, offering meaningful 
economic improvement and resilience for millions of small and 
marginal farmers, and setting a benchmark for scalable, 
accessible agri-tech innovation in developing economies. 

   

II. LITERATURE REVIEW 

Digital agricultural advisory systems and AI-based crop-yield 
research have rapidly expanded in the last decade, producing 
two distinct streams of work: (a) practical farmer-facing apps 
that deliver advisories and diagnostics, and (b) 
academic/industrial research that develops predictive models 
using remote sensing and machine learning. While both 
streams contribute substantially, a gap remains between 
predictive science and accessible, explainable, offline-ready 
farmer tools. 

1. Farmer-facing apps: scope and limits 

GeoKrishi[1] (Nepal) is an example of a geo-tagged farm 
advisory platform that enables farmer profiles, field mapping, 
activity tracking, and advisory services tailored to location. 
GeoKrishi[1] has been shown to improve extension reach and 

farmer practices in pilot deployments, but its public 
descriptions indicate a focus on rule-based advisories and 
training rather than advanced predictive modeling or 
explainability mechanisms. GeoKrishi’s[1] strength lies in 
localized advisory delivery, yet it stops short of model-based 
yield forecasting and explicit XAI outputs.  

India’s Kisan Suvidha[3] (government) provides essential 
services—weather, market prices, dealer info and general plant 
protection guidance—making it valuable for information 
dissemination. However, Kisan Suvidha’s[3] architecture is 
primarily informational; it does not integrate field-deployed 
IoT sensing or hybrid AI models for automated yield 
forecasting or prescriptive optimization. This limits its capacity 
to provide adaptive, farm-level decisions in real time.  

Commercial apps such as AgroStar[4] and Plantix[5] 
highlight different trade-offs. AgroStar[4] focuses on 
multilingual content, offline usability, e-commerce for inputs 
and community support, providing strong accessibility for 
farmers but leaning towards product recommendations and 
extension content rather than predictive yield models and 
XAI-backed prescriptions. Plantix[5] (PEAT/Plantix[5]) excels 
at image-based disease diagnosis using AI and has achieved 
high diagnostic accuracy through crowd-sourced images, but 
its evolution has revealed commercialization pressures (input 
sales) and an emphasis on diagnostics rather than end-to-end 
yield prediction and resource optimization. Both apps deliver 
clear farmer value (diagnosis, content, product access), yet 
neither fully bridges predictive analytics, IoT field sensing, 
model explainability, and low-connectivity prescriptive 
delivery simultaneously.  

Global platforms such as Climate FieldView[6] provide robust 
farm-scale data aggregation and decision-support for 
commercial growers, with strong analytics and remote sensing 
integrations. FieldView is data-rich but is primarily tailored to 
large-scale commercial operations and subscription models, 
making direct applicability to smallholder, low-connectivity 
contexts limited without further adaptation. 

 

      Fig.1. Existing Agricultural Apps vs Proposed AI Systems 
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2. Research on predictive models and explainability 

Systematic reviews of crop yield prediction confirm that hybrid 
models—combining regression, tree-based ensembles 
(XGBoost/RandomForest) and sequence models (LSTM, 
GRU)—consistently outperform single-model approaches, 
especially when temporal weather sequences and satellite 
indices (NDVI/LAI) are fused with soil and management data. 
Yet, many research efforts rely on historical or satellite/remote 
datasets rather than continuous, ground-truth sensor streams; 
consequently, model calibration to local micro-conditions (soil 
heterogeneity, irrigation events) is often weak.  

Recent work also highlights the necessity of Explainable AI 
(XAI) in agriculture. Studies demonstrate XAI methods 
(SHAP, LIME, counterfactuals) improve stakeholder trust and 
actionable interpretation of model outputs, particularly when 
recommendations concern resource inputs (fertilizer, irrigation) 
where farmers demand reasoning for suggested changes. 

3. Identified gaps across apps and research 

From the above review, four persistent gaps are evident: 

1. Ground-truth, continuous sensing: Many apps and studies 
lack integration of field-deployed sensor prototypes that 
capture soil moisture, pH, temperature and micro-climate in 
real time—data that materially improves model calibration and 
short-term forecasts.  

2. Hybrid predictive + prescriptive pipeline: While research 
produces high-accuracy predictors, few operational apps 
translate predictions into optimized, localized prescriptive 
actions (irrigation schedule, fertiliser dose).  

3. Explainability for adoption: XAI research is growing, but 
operationalization in farmer interfaces (concise, multilingual 
explanations via SMS/IVR/UIs) is still rare.  

4. Inclusivity and low-connectivity readiness: Commercial 
platforms often target smartphone users or commercial 
producers; many solutions do not provide robust offline modes 
(SMS/IVR) and multilingual design for smallholders. 
GeoKrishi[1], AgroStar[4] and Kisan Suvidha[3] address some 
accessibility aspects but not the complete suite 
(predictive+XAI+offline+IoT).  

4. How the proposed solution addresses the gaps 
(evidence-based positioning) 

The proposed system distinguishes itself by 1) integrating 
custom field sensors (soil moisture, pH, temperature, humidity) 
for continuous ground truth, 2) using hybrid AI stacks 
(Regression + XGBoost + LSTM) that fuse temporal, spatial 
and sensor inputs to produce robust yield forecasts, 3) 
embedding XAI outputs (SHAP/LIME summaries) into 

concise, multilingual advisories, and 4) enabling 
SMS/IVR/offline workflows for low-connectivity contexts. 
This design directly answers the core limitations identified 
above and aligns with the technical recommendations in 
current literature for hybrid models and explainability, while 
also delivering pragmatic accessibility and on-field data 
fidelity missing in existing apps and many studies. 
 

III. METHODOLOGY 
 
The proposed AI-Powered Crop Yield Prediction and 
Optimization System integrates IoT sensing, machine learning, 
and cloud computing to provide real-time, data-driven decision 
support for farmers. The architecture consists of six 
interconnected layers: Hardware, Data Integration, Machine 
Learning, Backend, Frontend, and User Interface (Fig. 2). 
 
A. Hardware Layer 
 
Custom-designed sensor nodes equipped with soil moisture, 
pH, temperature, and humidity sensors collect on-field data. 
Each node connects to an ESP32-based IoT gateway using 
LoRaWAN for long-range, low-power communication, 
ensuring reliable operation in rural areas. This setup enables 
continuous environmental monitoring and efficient data 
collection. 
 
B. Data Integration Layer 
 
Sensor data is transmitted via MQTT/HTTP to the backend, 
where it is enriched with contextual inputs from WeatherAPI 
and Gemini AI. This hybrid data stream combines real-time 
soil parameters, weather conditions, and historical datasets, 
forming a comprehensive agricultural knowledge base for 
model training and inference. 
 
 
C. Machine Learning Layer 
 
The ML module, developed using TensorFlow and Scikit-learn, 
employs a hybrid approach integrating Regression, XGBoost, 
and LSTM models for yield prediction and resource 
optimization. Explainable AI (XAI) components are embedded 
to ensure transparency, allowing farmers to understand the 
reasoning behind each recommendation. 
 
 
D. Backend and Database Layer 
 
Built on Node.js and Spring Boot, the backend manages data 
routing, preprocessing, and model execution. Processed 
insights are stored in Firebase Cloud Database, enabling 
real-time synchronization, offline access, and secure scalability 
across devices.  
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E. Frontend and User Layer 
The web interface (React.js, Next.js) and mobile app (Flutter) 
provide intuitive, multilingual dashboards in Odia, Hindi, and 
English, with offline and SMS/IVR support for 
low-connectivity areas. End-users receive personalized 
recommendations on irrigation, fertilization, and pest control, 
empowering data-driven decisions. 
 
 
F. Innovation and Advantages 
 
Unlike existing solutions such as GeoKrishi[1], Plantix[5], and 
Kisan Suvidha, this system combines real-time IoT sensing, 
hybrid AI modeling, and Explainable AI with a working sensor 
prototype. Its cloud-integrated and multilingual design ensures 
accessibility, adaptability, and precision—positioning it as a 
next-generation solution for smart and sustainable agriculture. 
 
 

 
  
                      Fig.2.   WORK AND DATA FLOW 
 

IV. IMPLEMENTATION & RESULTS 

Implementation 

Recent implementations of AI- and IoT-based agricultural 
systems demonstrate how data-driven technologies can 
enhance crop yield prediction and resource optimization. These 
frameworks typically integrate IoT sensor networks, cloud 
platforms, and machine learning (ML) models into a unified 
pipeline. 

1.IoT Implementation:​
Sensors deployed in agricultural fields continuously capture 
soil moisture, temperature, humidity, and nutrient levels, 
transmitting data via LoRaWAN, Zigbee, or GSM networks to 
cloud servers. This real-time data is fused with meteorological 
inputs and satellite-derived vegetation indices (NDVI, EVI) to 
capture both ground and atmospheric variability. 

2.Machine Learning Implementation:​
Collected data undergoes cleaning, normalization, and feature 
extraction before being processed using ML algorithms such as 
Random Forest, Gradient Boosting, LSTM, and CNN-based 
hybrid models. These models analyze temporal and spatial 
patterns to forecast crop yields and detect early signs of crop 
stress. Recent studies also integrate Explainable AI (XAI) 
methods (e.g., SHAP, LIME) to improve interpretability and 
decision trust among farmers. 

3.Cloud and Application Layer:​
Cloud-based deployment ensures scalability and real-time 
analytics, while user interfaces—mobile or 
web-based—provide actionable recommendations for 
irrigation, fertilization, and pest management. 

 

  Results 

Empirical evaluations across multiple agro-climatic zones 
reveal significant performance improvements: 

●​ Prediction Accuracy: Yield prediction models 
achieved R² values between 0.85–0.93, with mean 
absolute error reductions of up to 20% compared to 
conventional regression methods.​
 

●​ Resource Efficiency: Field implementations reported 
20–30% savings in irrigation water, 10–18% reduction 
in fertilizer usage, and 12–15% decline in pesticide 
applications.​
 

●​ Productivity Impact: Overall crop productivity 
improved by 8–15%, demonstrating the efficacy of 
integrating sensor-based monitoring with AI analytics.​
 

●​ Adoption and Usability: Systems offering multilingual 
support and explainable outputs recorded over 80% 
farmer satisfaction, promoting wider adoption and 
trust. 

                        
             
  
 
 
 
 
 
 
 
 
 
         

Fig.3.INTEGRATED AI-IOT FRAMEWORK FOR DATA 
DRIVEN OPTIMIZATION 
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V. CONCLUSION 

The integration of IoT sensing and AI-based predictive 
modeling is revolutionizing agriculture by improving 
precision, sustainability, and adaptability across diverse 
regions. Combining real-time environmental data with 
intelligent analytics enhances yield prediction, resource 
efficiency, and climate resilience. Cloud computing ensures 
scalability, while Explainable AI (XAI) builds trust through 
transparent insights. 

However, large-scale adoption requires addressing challenges 
in data governance, sensor affordability, and rural connectivity. 
Research underscores the need for inclusive digital platforms 
that merge real-time sensing, hybrid AI models, explainable 
recommendations, and multilingual accessibility. 

Future innovation must focus on context-aware, 
farmer-centric systems that bridge research and field 
practice—creating an equitable, data-driven agricultural 
ecosystem where technology empowers smallholder farmers 
through actionable intelligence. 
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