

Quick Order : Contactless Dining Management System

Janhvi Kaushal

Acropolis Institute of Technology & Research Indore, India
janhvikaushal210401@acropolis.in

Nupoor Sharma

Acropolis Institute of Technology & Research Indore, India
nupoorsharma210679@acropolis.in

Harshit Patel

Acropolis Institute of Technology & Research Indore, India
harshitpatel210776@acropolis.in

Nidhi Nigam

Acropolis Institute of Technology & Research Indore, India
nidhinigam@acropolis.in

Chanchal Bansal

Acropolis Institute of Technology & Research Indore, India
chanchalbansal@acropolis.in

Abstract—Quick Order is a web application designed to address the growing need for efficient restaurant management by creating a digital platform that connects customers and restaurants seamlessly. This platform enhances customer experience by enabling users to browse menus, place orders, and track their status in real time. Restaurants can register themselves, manage their profiles, update menus, and process orders through an intuitive dashboard. Quick Order also facilitates a robust analytics system to generate reports on customer preferences, sales trends, and peak activity times. By leveraging advanced technologies, the application streamlines operations, improves service delivery, and promotes a digital-first approach for restaurant businesses. Its user-friendly interface ensures convenience for customers while empowering restaurants with tools to boost operational efficiency and customer satisfaction.

Index Terms— Restaurant Management System, Digital Ordering Platform, Customer Experience Enhancement, Real-Time Order Tracking, Restaurant Analytics Dashboard, Food Tech Solutions, Contactless Dining, Web-Based Application, Smart Restaurant Operations

I.INTRODUCTION

In an era of digital transformation, the restaurant

industry is evolving rapidly to meet changing consumer demands for speed, efficiency, and personalization. Traditional restaurant operations often

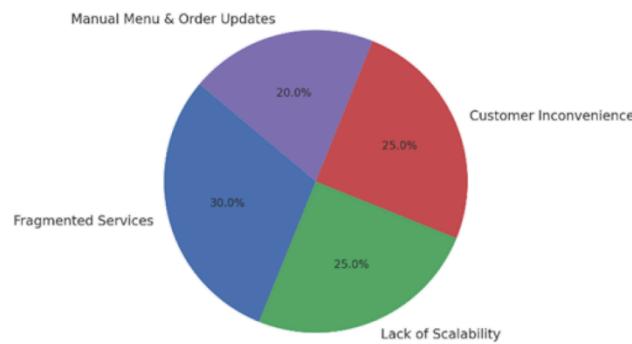
face challenges such as long wait times, communication errors, and lack of real-time data on customer preferences. These inefficiencies hinder customer satisfaction and impact operational performance [1].

Quick Order addresses these issues by offering a web-based solution that streamlines interactions between restaurants and their customers. By digitizing menu browsing, order placement, and tracking, Quick Order enables a seamless dining experience. Restaurants benefit from an intuitive dashboard that supports profile management, menu updates, and data-driven decision-making through analytics. This technology-driven approach enhances operational efficiency, reduces human errors, and promotes a digital-first culture in the food service industry [2].

By integrating smart features and a user-friendly interface, Quick Order exemplifies how digitalization can transform traditional service models into customer-centric, data-informed operations that align with modern expectations [3].

1.1 Existing System

In the current scenario, many restaurants either rely on traditional manual systems or deploy fragmented digital solutions that do not communicate with each other effectively. The inefficiencies inherent in these systems include:


Fragmented Services: Restaurants typically use different tools for managing orders, processing payments, and interacting with customers, leading to a disjointed workflow.

Lack of Scalability: Existing systems often do not support multi-restaurant functionality or franchise-based models, limiting their usefulness as businesses grow.

Customer Inconvenience: The absence of a unified and user-friendly interface makes it difficult for customers to browse menus, place orders, and track them conveniently.

Manual Menu and Order Updates: In many cases, menus and order statuses are updated manually, which increases the risk of errors, delays, and poor customer experiences.

These limitations indicate the need for a digital platform that can consolidate and automate core restaurant operations while improving the overall experience for both restaurant owners and customers.

Fig 1: Existing System Issues

1.2 Proposed System

The proposed system, Quick Order, is a SaaS-based platform aimed at improving restaurant operations and enhancing customer experience. It offers a unified digital interface for both restaurants and customers, eliminating the need for multiple disjointed tools.

Key Functionalities

Restaurant Management: Restaurants can register, create profiles, and manage menus dynamically, including item availability and pricing.

Customer Ordering: Users can browse categorized menus, customize items, place orders, and receive real-time updates.

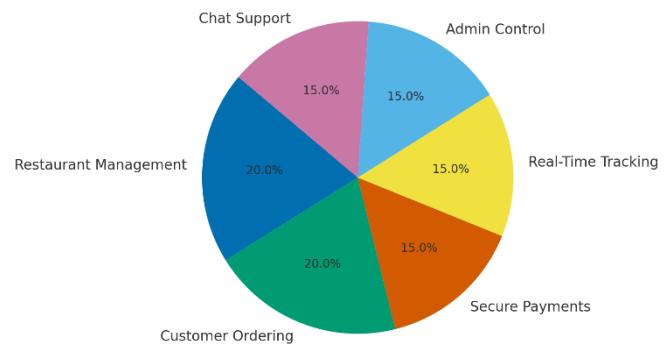
Secure Payments: Supports multiple payment options such as UPI, cards, and wallets with encrypted transactions.

Real-Time Tracking: Both users and restaurants can track order status from placement to completion.

Admin Control: An admin dashboard allows platform oversight, user management, and access to analytics.

Chat Support: Includes a chatbot for instant assistance, with escalation options for complex queries.

Technology Stack


Frontend: Flutter

Backend: FastAPI

Database: PostgreSQL

Hosting: Cloud-based for scalability and performance

This system bridges the gap between convenience and operational efficiency, offering a reliable, scalable solution tailored for modern restaurant businesses.

Fig 2: Proposed System

II. METHODOLOGY

The evolution of restaurant service management systems has been marked by the growing adoption of digital platforms to address the limitations of manual processes. Recent years have seen the emergence of several food delivery platforms such as Zomato and Swiggy, which offer robust interfaces for customers to order food online. However, these platforms

primarily focus on delivery and customer interfaces, lacking adequate back-end solutions for restaurant owners to manage their in-house orders, menu updates, and customer interactions independently.

1. KEY REQUIREMENTS

Academic studies and industry reports emphasize the following key requirements in modern restaurant service applications:

- Multi-platform accessibility is essential to ensure a consistent user experience across mobile and web devices.
- Real-time updates in order status enhance customer satisfaction and operational visibility.
- Restaurant-side control systems are largely absent in mainstream food delivery platforms, making it difficult for restaurants to streamline their backend operations independently.

The gap in current solutions lies in the absence of a comprehensive, unified, and scalable platform that simultaneously addresses both customer-facing services and restaurant operations. The Quick Order application is conceptualized to bridge this gap by providing a SaaS-based digital solution that encompasses menu management, order processing, analytics, real-time updates, and secure payments under one umbrella.

The project also integrates methodologies from agile software development to ensure incremental enhancements based on user and stakeholder feedback. This approach ensures adaptability and responsiveness to the evolving needs of the restaurant industry.

Fig 3: Existing Systems

2. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Quick Order is developed using a modular architecture based on the Model-View-ViewModel (MVVM) framework, ensuring separation of concerns, scalability, and maintainability [4]. The application includes:

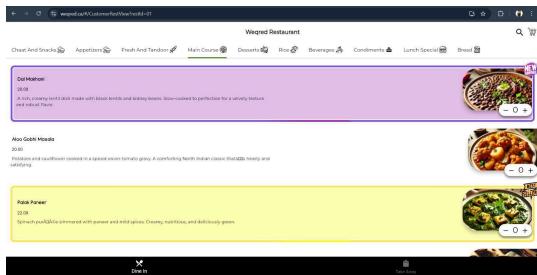
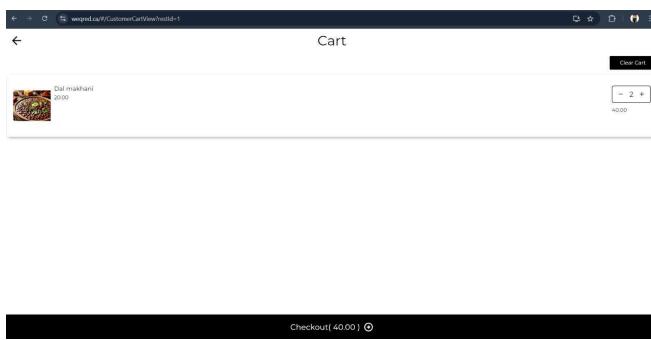

- **Frontend:** Developed with flutter for responsive UI.
- **Backend:** Implemented in fastAPI.
- **Database:** Postgresql for storing user profiles, menu details, and order history.
- **Analytics Module:** Uses SQL queries and charting libraries to display trends and insights.

TABLE 1: This architecture ensures adaptability and supports future integration of advanced tools like chatbots or loyalty systems [5].


Feature	Description
Customer Dashboard	Menu browsing, order placement, and real-time tracking
Restaurant Dashboard	Profile management, menu updates, and order processing
Order Status Notifications	Updates on order preparation and delivery
Analytics Reports	Insights into customer behavior, sales trends, and peak hours
Secure Login	Email-based and social media authentication options

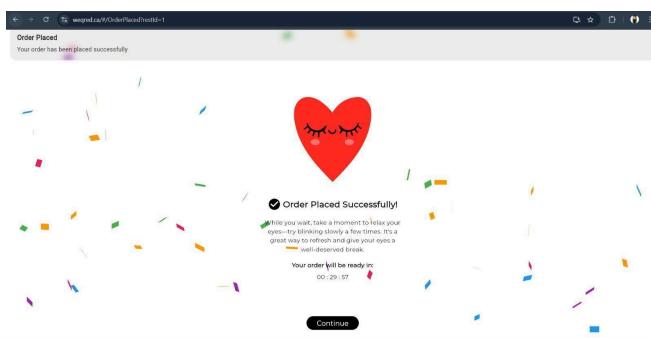

Fig 4: Login Page

Fig 5: Select your Order type

Fig 6: Add To Cart

Fig 7: Order Placed

3. CHALLENGES IN TRADITIONAL RESTAURANT (ORDER) MANAGEMENT SYSTEMS

Despite the availability of food-tech platforms, a large number of restaurants, especially small and medium enterprises (SMEs)—still operate with legacy processes that create inefficiencies.

3.1 Manual Order Handling

Traditional systems rely on waiters to take verbal or handwritten orders, increasing the chance of human error,

misplaced items, and delays during peak hours [5]. These inefficiencies lower customer satisfaction and increase the workload on staff.

3.2 Limited Menu Visibility

Menus are often printed and static, lacking real-time updates on item availability or pricing. This causes confusion and customer dissatisfaction when orders are refused post-placement [6].

3.3 No Data Utilization

Conventional setups provide no structured data to help restaurant owners understand:

- Customer behavior
- Best-selling items
- Seasonal trends

Without data, business decisions are based on assumptions rather than insights [7].

3.4 Inconsistent Service Delivery

Manual systems lack centralized dashboards, making it hard to manage orders efficiently. Queues get longer, staff are overwhelmed, and order tracking becomes impossible [8].

With Quick Order, these challenges are mitigated through digital interfaces, real-time status tracking, and centralized dashboards accessible to both staff and customers [9].

4. CASE STUDY: CHALLENGES & DIGITAL SOLUTIONS IN INDIAN RESTAURANT INDUSTRY

4.1 Current Landscape in India

India's food services sector is booming, but digital transformation is uneven. While urban fine-dining chains have adopted technology, local eateries and mid-sized restaurants face hurdles such as:

- Lack of affordable tech infrastructure
- Language barriers
- Low digital literacy among staff
- Dependence on cash transactions [10]

4.2 Challenges Faced

- **Slow Service:** Manual queues and orders delay customer turnover.

- **Cash Dependency:** Reduces convenience and is risky for hygiene (especially post-COVID).
- **No Contactless System:** Customers still depend on servers for everything, causing congestion and errors.

4.3 How Quick Order Solves This

Quick Order was designed with simplicity in mind:

- **Multilingual Interface:** Supports English and regional languages for wider accessibility.
- **Web-Based, No App Needed:** Works on any device with a browser.
- **UPI Integration:** Enables digital payments, removing cash dependency.
- **Data Insights:** Helps restaurant owners identify best-selling items and low-performing dishes [11].

These features make Quick Order ideal for India's diverse food industry, from cloud kitchens to local cafes [12].

5. FUTURE ENHANCEMENTS: IOT AND BLOCKCHAIN INTEGRATION

5.1 IoT Integration

IoT devices can transform Quick Order by enabling:

- **Smart Kitchens** – Devices that track cooking progress, ingredient freshness, and machine diagnostics.
- **Table Occupancy Sensors** – Detect when tables are free or need service, improving turnover rates [10].

5.2 Blockchain for Transparency

Blockchain offers:

- **Secure Transactions** – Immutable payment and order logs.
- **Traceable Ingredients** – Food sourcing and expiry tracking for compliance and trust [11].

These enhancements promise better efficiency, customer trust, and traceability, driving the digital transformation of restaurant operations [12].

III. CONCLUSION

Quick Order presents a transformative, digital-first approach to modern restaurant management by addressing core inefficiencies in ordering, real-time tracking, and operational reporting. The platform centralizes and automates key functions—such as menu management, secure payment processing, and customer interaction, thereby improving service delivery and enhancing user satisfaction. For restaurant operators, it provides an intuitive dashboard to streamline daily operations, analyze customer trends, and make data-driven decisions.

Beyond its current capabilities, Quick Order is envisioned as a future-ready platform with planned integration of emerging technologies such as IoT (Internet of Things) for smart kitchen automation and blockchain for secure, transparent transaction logging and supply chain traceability [13]. These advancements will contribute to improved operational visibility, better inventory control, and tamper-proof order management.

By combining innovation with scalability, Quick Order is poised to redefine how food service businesses operate, laying the groundwork for a more intelligent, automated, and responsive hospitality ecosystem [14].

REFERENCES

- [1] Gupta, A., & Mishra, V. (2021). *Digital transformation in the food service industry: A study on customer satisfaction*. Journal of Business Research, 124(3), 234-242.
- [2] Sharma, P., & Dey, S. (2022). *Enhancing operational efficiency through digital dashboards in restaurant management systems*. International Journal of Computer Applications, 178(7), 15-21.
- [3] Rao, K. M., & Iyer, P. (2023). *User-centered design in digital restaurant platforms: Case studies from India*. Journal of UX & Interaction Design, 6(2), 45-56.
- [4] Martin, R. (2018). *Clean Architecture: A Craftsman's Guide to Software Structure and Design*. Prentice Hall.
- [5] Kapoor, S., & Jain, A. (2020). *Automation in Restaurant Services Using Digital Platforms*. International Conference on Smart Computing & Communications, IEEE, 98-103.
- [6] Bhatnagar, P., & Sen, R. (2021). *The impact of real-time menu updates on customer satisfaction*. Journal of Hospitality Technology, 5(1), 11–20.
- [7] Singh, R., & Mehta, D. (2019). *Data analytics for restaurant performance improvement*. Proceedings of the 12th International Conference on Big Data Analytics, Springer, 64–75.
- [8] Kaur, H., & Aggarwal, N. (2020). *Challenges in manual restaurant order systems and the rise of digitization*. International Journal of Hospitality Information Systems, 9(2), 35-42.
- [9] Patel, M., & Bansal, R. (2023). *A comparative study of food-tech platforms in India*. International Journal of Modern Computing, 17(4), 50–60.
- [10] FICCI-PWC Report. (2022). *The Indian Food Services Industry: Engines of Growth*. Retrieved from <https://ficei.in>
- [11] Sinha, T., & Rao, A. (2022). *Blockchain and IoT in Restaurant Tech: Opportunities and Applications*. Journal of Emerging Technologies, 10(3),

22–30.

- [12] Jadhav, P., & Singh, S. (2021). *Digital inclusivity in India's food industry: The role of simple interfaces and mobile tech*. Indian Journal of Applied IT, 12(1), 87–94.
- [13] Kumar, A., & Das, S. (2023). *Scalable digital models for restaurant management systems*. Tech Horizons, 5(6), 118–125.
- [14] Tiwari, R., & Verma, L. (2024). *Future of smart hospitality with digital-first applications*. International Journal of Computer and Information Technology, 11(2), 74–80.
- [15] Kate, V., & Shukla, P. (2021). *A 3 Tier CNN model with deep discriminative feature extraction for discovering malignant growth in multi-scale histopathology images*. Informatics in Medicine Unlocked, 24, 100616.