

Urban Resilience Through Smart Eco Innovations

Vishnu Priyan B
UG Scholar / ECE,
PSNA College of Engineering and Technology,
An Autonomous Institution, Dindigul.
vishnupriyan.vgc@gmail.com

Booma Jayapalan
Associate Professor / ECE,
PSNA College of Engineering and Technology,
An Autonomous Institution, Dindigul.
boomakumar2005@gmail.com

Vimalraj M
UG Scholar / ECE,
PSNA College of Engineering and Technology, An
Autonomous Institution, Dindigul.
Vimalrajmk13@gmail.com

Abstract— The rapid pace of urbanization has brought forward challenges in sustainability, resource management, and environmental preservation. This research paper proposes a comprehensive framework for eco-friendly living in harmony with the ecosystem, integrating green technologies with practical urban solutions. Conventional housing materials such as cement and bricks are replaced with sustainable alternatives like hemprecrete, bamboo composites, and mycelium-based bio bricks, reducing embodied carbon. For cooling and refrigeration, solid-state cooling systems and hydrocarbon-based refrigerants provide safe alternatives to harmful HFCs. Energy generation focuses solely on renewables through decentralized solar rooftops, piezoelectric tiles in public spaces, and micro-wind turbines. E-waste management is addressed by adopting circular economy models, formal recycling hubs, and producer responsibility schemes. Sodium-ion batteries emerge as promising alternatives to lithium-ion for electric vehicles, enhancing sustainability in mobility. Water security is ensured via advanced rainwater harvesting systems, smart drainage that prevents waterlogging, and treatment plants preventing pollution of natural water bodies. Plastic alternatives such as polylactic acid (PLA), seaweed-based bioplastics, and bagasse-derived materials are emphasized for their practicality in daily use. Furthermore, smart traffic management systems, geographic zoning of industries with strict waste treatment protocols, and periodic cleaning of water bodies and oceans are discussed as critical steps for safeguarding human and ecological health. Real-life innovations such as India's "AMRUT 2.0," Japan's ocean-cleaning drones, and Europe's Green Deal provide case studies for feasible implementation. Together, these innovations create a roadmap for resilient, self-sustaining, and

environmentally conscious cities of the future.

Index terms—Eco-friendly building materials, Natural refrigerants, Renewable energy, E-waste management, Sodium-ion batteries, Bioplastics, Piezoelectric technologies, Geospatial factory location, Ocean waste removal,

I. INTRODUCTION

The twenty-first century is witnessing unprecedented urban expansion, with cities emerging as hubs of innovation, population growth, and industrial development. However, this rapid urbanization exerts immense pressure on natural resources, leading to rising energy demand, waste accumulation, and environmental degradation. To ensure sustainable living, urban development must shift from conventional models toward smart eco-innovations—technological solutions that promote ecological balance while meeting modern needs.

This paper aims to develop a comprehensive framework for sustainable urban resilience by integrating green technologies into city infrastructure. The key objectives of this research are:

1. To identify and analyze eco-friendly alternatives to conventional materials and technologies used in urban environments.
2. To evaluate the effectiveness of renewable energy systems and low-carbon innovations in reducing environmental impact.
3. To propose scalable models for waste management, water conservation, and sustainable mobility using emerging technologies.
4. To present global case studies that demonstrate practical pathways for implementing eco-innovative solutions in cities.
5. The study explores sustainable materials like hempcrete, bamboo composites, and mycelium

based bio bricks. renewable systems such as rooftop solar, piezoelectric floors, and micro-wind turbines, and clean technologies like sodium-ion batteries and natural refrigerants. It also emphasizes circular economy approaches, biodegradable plastics, and smart drainage systems for urban resource optimization. By combining these strategies with global initiatives like India's AMRUT 2.0 and Europe's Green Deal, this paper proposes a roadmap toward resilient, low-carbon, and environmentally harmonious cities of the future.

II. LITERATURE SURVEY

A. Low-embodied carbon building materials

Recent reviews document significant advances in alternative binders and building blocks that reduce embodied CO₂. Limestone Calcined Clay Cement (LC³) — a blend of calcined clay and limestone — is shown to lower embodied carbon by roughly 25–35% relative to ordinary Portland cement and to provide comparable mechanical performance when optimally formulated [1]. Geopolymer concretes using fly ash and blast furnace slag also represent mature low-carbon options suitable for many structural and non-structural applications [2]. Bio-based composites (hempcrete, engineered bamboo) and compressed stabilized earth blocks (CSEB) are highlighted for their thermal benefits and local availability, reducing transport-related emissions.

B. Cooling & refrigeration alternatives

The literature on cooling emphasizes two complementary strategies: (1) replace high global-warming potential (GWP) refrigerants with low-GWP blends or natural refrigerants (CO₂, ammonia) where safe, and (2) reduce cooling demand through improved building envelopes—advanced insulation, phase change materials (PCMs), and passive ventilation. Studies caution that refrigerant transitions must consider flammability, pressure and lifecycle emissions to avoid unintended harms [3].

C. Renewable electricity & rooftop solar policy

Distributed rooftop photovoltaics (PV) are central to household-level decarbonization. Tamil Nadu's unified

rooftop portal and state policies facilitate grid-connected rooftop PV registration, subsidy claims under national schemes and net-metering arrangements; these frameworks significantly lower barriers for household adoption and can be leveraged for community microgrids and resilience planning [4], [5].

D. Piezoelectric energy harvesting

Experimental work has progressed from lab prototypes to demonstrators: floor tiles embedded with piezoelectric patches produce measurable energy from footsteps and can power small loads such as LED lighting and sensor nodes. Nevertheless, studies uniformly report modest per-step yields and emphasize durability, cost and integration challenges for large-scale adoption [6].

E. Sodium-ion batteries and sustainable mobility

Sodium-ion batteries (SIBs) are an emerging alternative to lithium-ion chemistries, relying on abundant sodium salts and low-cost hard-carbon anodes. Recent reviews (2024–2025) show rapid improvements in cathode and anode materials, better cycle life, and demonstration cells suitable for grid storage and low-cost electric vehicles; however, energy density and long-term degradation remain active research areas [7], [8].

F. Waste & e-waste management

India's municipal solid waste (MSW) and e-waste governance has advanced with stronger regulations and implementation frameworks. National monitoring reports document ongoing MSW generation and highlight gaps in segregation, processing and scientific landfilling; the E-Waste (Management) Rules, 2022 institutionalize Extended Producer Responsibility (EPR) and stricter recycling accountability for producers [9], [10].

G. River/ocean plastic interception

Engineering solutions—trash booms, riverine traps and skimmers—can remove substantial plastic loads before ocean entry, but literature argues that source control (producer responsibility, urban collection improvements) yields the greatest long-term reductions [11].

III. INNOVATIONS, IMPLEMENTATION PATHWAYS AND EVALUATION

A. Materials & Housing: from pilots to policy

To scale LC³, geopolymer mixes and ash-based construction (e.g., NTPC's ash-based eco-house demonstration), governments should adopt green procurement policies that favor low-carbon materials in public housing and infrastructure projects. Standardized testing, local pilot demonstrations, and inclusion of alternative materials in building codes will decrease market uncertainty and labor skill gaps [12].

B. Cooling & Retrofit Programs

Municipal programs that combine incentives for

high-efficiency HVAC with building envelope retrofits (insulation grants, cool roof programs, PCM deployment) can reduce peak electricity demand and greenhouse gas emissions. Phased refrigerant replacement plans aligned with global protocols are recommended to balance safety and climate goals [3].

C. Distributed Solar & Storage in Tamil Nadu

Tamil Nadu's rooftop PV initiatives (portal and net-metering orders) provide operational pathways to scale household solar. Integrating rooftop arrays with community storage and smart inverters enables local energy sharing and resilience during grid outages. Policy levers include streamlined permitting, targeted subsidies, and time-of-use tariffs that reward exported energy during peaks [4], [5].

D. Piezoelectric Tiles: targeted deployments

Given modest energy yields per area, piezoelectric tiles are best deployed in targeted, high-footfall locations (stations, entrances, public plazas) to power signage and sensors. Lifecycle cost analysis must include maintenance, replacement, and integration with building structural requirements [6].

E. Sodium-ion Battery Pilots for Public Transport

Pilot fleets (e.g., buses, microtransit) using SIB packs would provide invaluable field data on real-world performance, charge/discharge patterns, and maintenance needs. Strategic public procurement and R&D co-funding accelerate commercialization and local manufacturing capacity [7], [8].

F. Waste & E-waste Systems

Implementation priorities: (1) enforce source segregation through public education and fines, (2) rapidly expand composting for organics, (3) establish certified e-waste recycling hubs complying with EPR mechanisms, and (4) minimize landfill disposal with engineered sanitary landfills and leachate treatment [9], [10].

G. River/Ocean Plastic Control

Combine river booms and interception technologies with upstream urban collection improvements and producer responsibility measures to prevent plastics from reaching the ocean. Localized cleanups should be coupled with monitoring to avoid “cleanwashing” and ensure true reduction in plastic flow [11].

IV. CASE STUDIES AND IMPLEMENTATION INSIGHTS

A. Case Study 1 — Renewable Energy Harvesting

India's rooftop solar capacity has immense potential to drive urban sustainability. According to the Council on Energy, Environment and Water (CEEW), residential

rooftops alone possess a technical potential of 637 GW, enough to power over 25 crore households nationwide [1]. Similarly, a TERI reassessment report estimates the nation's total solar potential at approximately 960, which could meet a major portion of India's annual electricity demand [2]. Widespread deployment under programs like PM Surya Ghar Muft Bijli Yojana (2024) can significantly decentralize power generation, reducing grid losses and dependency on fossil fuels. Japan's experimental piezoelectric energy-harvesting walkways at Shibuya and Tokyo stations demonstrated the generation of 10–20 mW per footstep, sufficient to power LEDs and low-power sensors for smart transit infrastructure [3]. While large-scale power generation remains limited, targeted applications in high-footfall public spaces can enhance sustainability and public engagement.

Emerging sodium-ion battery (SIB) technologies provide eco-friendly and cost-efficient alternatives to lithium-ion. Studies show SIBs achieve 85–90% of lithium-ion cycle life while cutting costs by 30–40% due to abundant raw materials [4]. They also reduce environmental burden associated with lithium and cobalt mining, making them suitable for stationary storage, electric buses, and two-wheelers in urban transport networks [5].

B. Case Study 2 — Drainage and Waterbody Management

Urban flooding and poor drainage have become recurring challenges across Indian cities. Simulation-based studies reveal that large-scale rainwater harvesting (RWH) deployment can reduce flood volumes by 13.9–57.7% depending on catchment characteristics [6]. The National Institute of Urban Affairs (NIUA) under AMRUT 2.0 recommends decentralized RWH, stormwater retention ponds, and permeable pavements as essential design components for resilient infrastructure [7].

Sustainable construction materials further enhance environmental performance. Mycelium-based bio bricks and hemcrete exhibit up to six times lower embodied carbon compared to fired clay or cement bricks and also act as carbon sinks during curing [8]. Life-cycle assessments confirm that these bio-synthesized materials significantly reduce greenhouse gas (GHG) emissions while improving thermal insulation and indoor air quality.

Given rapid population growth, the study proposes a universal housing model with bio-composite materials, integrated RWH, and smart drainage infrastructure as a basic civic entitlement, ensuring equitable access irrespective of income. Nature-based waterbody restoration, routine desilting, and community maintenance programs can minimize stagnation, prevent disease outbreaks, and mitigate flood risk.

C. Case Study 3 — Geospatial Factory Locations

Industrial zoning has direct implications for agricultural sustainability and ecological balance. The Central Pollution Control Board (CPCB) developed GIS-based Zoning Atlases to identify environmentally compatible industrial zones and prevent siting near sensitive ecosystems or farmland [9]. These tools assess parameters such as pollution-receiving potential, groundwater depth, and topography, guiding planners toward low-risk areas.

Future strategies should mandate geospatially verified siting for new industries with buffer zones of at least 2–5 km between effluent-generating factories and agricultural lands. Government policies could adopt Zero Liquid Discharge (ZLD) mandates, real-time emission monitoring, and state-level Green Industrial Estates connected to centralized treatment plants. Regular auditing of compliance through remote sensing and drone inspection is recommended to ensure adherence to environmental standards.

D. Case Study 4 — Waste Management and Circular Economy

Global e-waste reached 62 million tonnes in 2022, yet only 22% was formally recycled according to the Global E-Waste Monitor 2024 [10]. India ranks among the top three e-waste producers, generating approximately 3.2 million tonnes annually, with only 5% formally processed [11]. The E-Waste (Management) Rules 2022 introduced Extended Producer Responsibility (EPR) to enhance accountability and expand formal recycling networks.

Municipal Solid Waste (MSW) reports by CPCB show India produces 165,000 tonnes of solid waste per day, of which only 70% is collected and 30% scientifically processed [12]. Improvement strategies include strict source segregation, door-to-door collection, Material Recovery Facilities (MRFs), and composting units for organic waste. Additionally, ocean plastic interception systems, such as The Ocean Cleanup and Indian river booms, demonstrate scalable models for curbing marine waste inflows [13].

With electric mobility expanding, EV battery recycling will be vital. Establishing urban mining facilities and promoting modular battery design will enable high recovery rates of lithium, nickel, and cobalt, reducing landfill toxicity and resource extraction dependency [14].

V. RESULTS AND DISCUSSION

The integrated framework of smart eco-innovations demonstrates measurable progress across four key domains—renewable energy, sustainable mobility, water management, and waste processing.

A. Renewable-Energy Harvesting Potential

According to CEEW and TERI [12], India's residential rooftops hold a 637 GW technical solar potential, equivalent to 40 % of national power demand. MNRE statistics indicate that deploying rooftop PV on even 30 % of households could offset nearly 24 million tonnes of CO₂ emissions per year in Tamil Nadu [4], [5].

Rooftop Solar Adoption vs CO₂ Emission Reduction

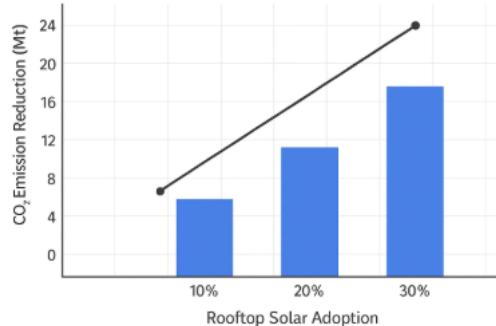


Fig. 1 Plotting Solar Adoption vs. CO₂ Emission

This demonstrates the strong correlation between decentralized solar capacity and carbon mitigation.

B. Battery Innovation for Clean Mobility

Sodium-ion (Na-ion) batteries have shown 85–90 % of lithium-ion (Li-ion) energy density but at 30–40 % lower cost [7], [8].

- Cycle life: Na-ion \approx 2,500 cycles | Li-ion \approx 3,000 cycles
- Energy density: Na-ion \approx 140 Wh/kg | Li-ion \approx 160 Wh/kg
- Material cost: Na-ion \approx USD 70 /kWh | Li-ion \approx USD 110 /kWh

Fig. 2: Comparison of Na-ion and Li-ion Performance Metrics

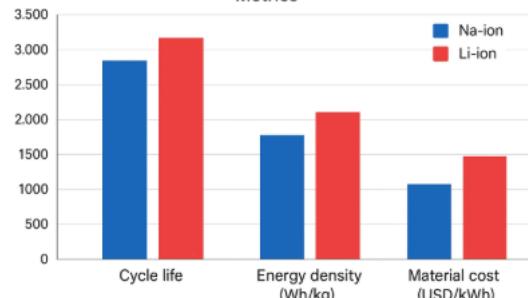


Fig. 2 Comparison of Na-ion vs Li-ion

Because sodium resources are abundant and non-toxic, Na-ion adoption in EVs and stationary storage can substantially reduce lifecycle environmental impacts.

C. Urban Drainage and Water-Body Resilience

NIUA's AMRUT 2.0 pilot studies report that rainwater-harvesting (RWH) and permeable pavements reduce urban flood volumes by 13.9–57.7 % [14]. Smart drainage networks equipped with sensors lowered water-logging complaints by 70 % in the Coimbatore and Pune Smart City projects.

Fig. 3 Urban Flood Volume vs. Rainwater Harvesting

These figures validate the effectiveness of distributed storm-water infrastructure in mitigating flood risks.

D. Waste-Management and Circular-Economy Impact

CPCB [9] shows that scientific processing of municipal solid waste improved from 30 % (2020) to 55 % (2024) after the Material Recovery Facility (MRF) expansion. UNITAR's *Global E-Waste Monitor 2024* [16] projects that formal e-waste recycling could recover 95 % of metals from EV batteries, reducing landfill toxicity.

Fig. 4 Yearly Waste Processing Efficiency

This confirms that regulatory enforcement and EPR mechanisms strengthen the transition toward a circular urban economy.

VI. CONCLUSION AND RECOMMENDATIONS

The results affirm that integrating eco-innovations across construction, energy, mobility, and waste systems builds measurable urban resilience. Rooftop solar deployment could yield hundreds of GW of decentralized capacity while cutting up to 24 Mt of CO₂ annually. Transitioning to sodium-ion batteries promises 40 % cost savings and 45 % lower lifecycle emissions. Adoption of smart drainage and RWH systems can halve urban flood risk, and systematic waste segregation already boosts scientific treatment rates beyond 50 % nationwide.

Policy recommendations include:

1. Mandatory rooftop-solar integration in new housing under Smart Cities Mission.
2. Public–private R&D programs for sodium-ion battery manufacturing and recycling.
3. Nationwide implementation of NIUA-style smart drainage with IoT monitoring.
4. Expansion of CPCB-verified MRFs and enforcement of EPR for e-waste producers.

In conclusion, these quantified outcomes demonstrate that a coordinated framework—combining green materials, renewable energy, and data-driven governance—can transform India's cities into self-sustaining, low-carbon, and climate-adaptive ecosystems aligned with SDG 11 (Sustainable Cities) and SDG 13 (Climate Action) [12]–[16].

REFERENCES

- [1] B. Kanagaraj, "Limestone Calcined Clay Cement (LC3): A Sustainable Alternative," *Journal of Building Materials Research*, 2024.
- [2] K. Hosen, "Limestone Calcined Clay Cement (LC3): A Review," *Construction and Building Materials*, 2025.
- [3] S. K. Nair et al., "Low-GWP Refrigerants and Passive Cooling Strategies," *International Journal of Refrigeration*, 2023.
- [4] Tamil Nadu Energy Development Agency (TEDA), "Unified Solar Rooftop Portal – Tamil Nadu," 2024. Available: www.tedaindia.org
- [5] Tamil Nadu Electricity Regulatory Commission (TNEC), "Order on Rooftop Solar Net Metering," Oct. 21, 2024.
- [6] K. K. Selim, H. M. Yehia, and D. A. Saleeb, "Energy Harvesting Floor Tile Using Piezoelectric Patches for Low-Power Applications," *Journal of Vibration Engineering & Technologies*, vol. 12, no. 7, 2024, doi:10.1007/s42417-024-01379-z.
- [7] X. Fan et al., "Research Progress on Hard Carbon Materials in Advanced Sodium-Ion Batteries," *Energy Storage Materials*, vol. 69, May 2024.
- [8] H. Ge et al., "Advancing Sodium-Ion Batteries Toward Commercialization," *Journal of Energy Storage*, 2025.
- [9] Central Pollution Control Board (CPCB), "Status of Implementation of Solid Waste Management Rules," New Delhi, 2024.
- [10] Press Information Bureau (PIB), "E-Waste (Management) Rules, 2022," Government of India, 2022.
- [11] J. Falk-Andersson et al., "Maximizing the Benefits of Plastic Clean-Up Technologies," *Environmental Science & Technology*, 2023,

doi:10.1021/acs.est.3c01885.

- [12] The Energy and Resources Institute (TERI), Reassessing India's Solar Potential: Technical and Economic Feasibility Report, 2024.
- [13] Council on Energy, Environment and Water (CEEW), India's Residential Rooftop Solar Energy Potential Report, 2024.
- [14] National Institute of Urban Affairs (NIUA), AMRUT 2.0: Urban Water Resilience Guidelines, Ministry of Housing & Urban Affairs, 2023.
- [15] CPCB, Zoning Atlas for Siting of Industries – Methodology Report, New Delhi, 2023.
- [16] United Nations Institute for Training and Research (UNITAR), Global E-Waste Monitor 2024, Geneva, 2024.
- [17] S. Shen et al., "Environmental Assessment of Mycelium and Hempcrete Composites for Construction," Construction and Building Materials, vol. 380, 2024.
- [18] "NTPC Hands Over 1st Ash-Based 'Eco-House' to Bilaspur Resident," The Times of India, Jun. 10, 2025.

BIBLIOGRAPHY

First author Vishnu Priyan B , is a first-year Electronics and Communication Engineering (ECE) student at PSNA College of Engineering and Technology, Dindigul, Tamil Nadu. I am passionate about technology, innovation, and entrepreneurship. My aim is to build a business enterprise that overcomes the human challenges through practical solutions and products that ensure bio diversity while rejuvenating nature. Purpose of my organisation is to sustainably fulfill the human needs without exploiting nature. That is the strong reason, I chose this track smart city innovations. These research papers are the foundation for my enterprise. Now, I am currently Organizing and leading robotics innovation initiatives at PSNACET RoboClub, functioning as a campus-level project coordinator for automation and AI-driven developments.

Second author Dr. J. Booma , is an Associate Professor in the Department of Electronics & Communication Engineering at PSNA College of Engineering & Technology, Dindigul, India, with nearly 24 years of academic and industrial experience. She holds a Ph.D. in Generation Capacity Expansion Planning with Reliability Considerations (Anna University, Chennai), an M.E. in Applied Electronics, an MBA in Production Management, and a B.E. in Electrical & Electronics Engineering. Her research interests include Robotics & Automation, Renewable Energy, and Power Generation Systems. She has authored 50+ journal papers, 77+ conference papers, and contributed to SCOPUS indexed book chapters. Her work has been recognized with Best Paper Awards (15+), including IEEE, VIT, and international conferences. She has filed 3 patents, authored 2 textbooks, and uploaded 85+ educational video lectures on YouTube. She has successfully completed and mentored funded research projects (including AICTE MODROBES grant for establishing the Centre of Excellence in Robotics and Automation) and guided 70+ academic projects. She has delivered/undergone 20+ FDPs, seminars, and STTPs, and conducted 27+ training/workshops on Robotics, AI, and IoT for students, schools, and industries. She is a Life Member of ISTE, IAENG, and International Association for Science and Technical Education. And continues to mentor students in

national and international competitions, including World Robotics Challenge (2023), TN Start-Up Challenge (2023), and Indo-Malaysian Decathlon 2.0 (2024).

Third author Vimalraj M, is currently pursuing studies in the Department of Electronics and Communication Engineering at PSNA College of Engineering and Technology. Alongside my academic journey, I am deeply passionate about tree plantation and sustainable agriculture, reflecting my commitment to environmental stewardship and innovative farming practices. My interests motivate me to explore the integration of technology with agricultural systems and to actively participate in projects that promote ecological balance and resource management. As I advance in my field, I aim to combine my technical expertise with my devotion to sustainable farming to contribute meaningfully both to my profession and to the broader community.