
ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

A Ground-Up Pedagogical Framework for
Teaching Python Problem Solving

Radha Bhonde
Dept. of CSE

SKITM, Indore
Indore, India

shinderadha25@gmail.com

Deepak Bhonde
Dept. of CSE

SKITM, Indore
Indore, India

Kiran Rai
Dept. of CSE

SKITM, Indore
Indore, India

Abstract—-Accomplishing capability in Python pro-
gramming depends not as it were on getting a handle
on its language structure but, more vitally, on de-
veloping compelling problem-solving abilities through
dynamic hone. For apprentices, working on well-
scoped small problems a which disconnect one or
two center concepts and surrender quick, unquestion-
able output provides the foremost coordinate course
to internalizing computational rationale. Such issues
ordinarily span fundamental categories (e.g., number
juggling operations and sort transformation, string
control, conditionals, circles, information structures,
and basic capacities), reflecting a characteristic learn-
ing movement from consecutive execution to decision-
making, reiteration, information organization, and
seclusion. By over and over deciphering hypothetical
builds into concrete code, learners uncover crevices
in understanding, lock in in basic investigating, and
construct the muscle memory required for rectify
sentence structure and coherent stream. Organized
fittingly, these works out strengthen foundational
concepts and get ready understudies to handle more
complex challenges. Thus, a beginners educational
programs ought to prioritize hands-on issue solving
using brief, concept-focused exercises while treating
hypothetical instruction as a springboard for prompt
application and iterative ability refinement.

Index Terms—Python exercises, Hands-on coding,
Active learning in programming, Learning progres-
sion in Python.

I. INTRODUCTION

Achieving expertise in Python programming goes
far beyond syntax. Essentially, it requires strong
analysis and connections of error resistance skills.
For those starting with coding adventures, fighting
the challenge of byte size provides the most efficient

way to establish a solid understanding of under-
standing. This strategy translates abstract theory
into capabilities and promotes an intuitive sense of
algorithmic discussion. The repeated focus, training
and newcomer issues in many real educational
materials highlight the fundamental truth. Passive
absorption of materials, such as textual overlap
and consideration of demonstrations, is no longer
a true understanding of programming. True com-
mands arise from a dedicated and cyclical process
of trying solutions, fixing in the face of errors, and
increasing improvements in the approach. Such ac-
tive participation is extremely important as it forces
learners to transform conceptual ideas such as loop
functionality and conditional logic into material,
executed scripts. Of course, this transformation is
misleading, requires debugging, and constructs a
critical reflection for accurate syntax and coherent
program flow. Ultimately, the educational path of
beginners should be strongly emphasized in the
hands of the question, thereby allowing theoretical
concepts to act as practical, immediate stepping
stones. This synergy ensures that core ideas are not
only genuinely learned, but also can be thoroughly
and easily used.

II. LITERATURE REVIEW:

A literature review on understanding ”mini chal-
lenges” in Python for novices explores how small,
focused programming tasks can support learning in
introductory computer science education. While the
term ”mini challenges” isn’t widely standardized in

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 357



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

academic literature, related research sheds light on
their pedagogical value. Here’s a synthesis of key
insights:

1. Learning Challenges for Novices

Novice programmers often struggle with:
• Abstract thinking and algorithmic logic
• Syntax and semantics of programming languages
• Misconceptions about how code executes (e.g.,

variable assignment, loops)
• Lack of confidence and fear of failure3

2. Role of Mini Challenges

Mini challenges—short, targeted coding tasks—
can:
• Reinforce specific concepts like loops, condition-

als, or functions
• Provide immediate feedback and build confidence
• Encourage active learning and problem-solving
• Help instructors identify misconceptions early

3. Instructional Strategies

Effective use of mini challenges includes:
• Embedding them in larger projects or lessons
• Using them as formative assessments
• Encouraging peer discussion and reflection
• Aligning them with common novice errors3

4. Research-Based Approaches

Studies suggest that:
• Structured, bite-sized tasks reduce cognitive over-

load
• Addressing misconceptions explicitly improves

conceptual understanding
• Action research and systematic literature reviews

help identify best practices for teaching program-
ming to beginners
I. Understanding “Mini Challenges” in Python

for Novices
Understanding mini-working tasks in Python for

beginners refers to limited complexity issues focus-
ing on one or many basic programming ideas in the
context of Python organization for beginners. These
tasks are intentionally not complicated, concise,
and can be resolved in a few minutes to an hour.
Typically, it avoids relying on external modules and
instead encourages the creation of custom logic,

enhancing the core concept. It is important for be-
ginner level questions to create clear and immediate
editions to help learners check their solutions effec-
tively and create trust. Classification of problems in
this way helps learners determine areas that need
improvement and promote a balanced acquisition of
various Python skills. Education platforms often or-
ganize tasks at the beginner level in sections such as
string manipulation, additional typical group-based
features, and more. ”Fundamental syntax, includes
operations, includes operations. Repeatability (e.g.,
loops) Let’s explore a short example and its code
snippet:

1. Basic Calculations & Variables
a, b = int(input(”A: ”)), int(input(”B: ”))
print(”Swapped:”, b, a)
c = float(input(”Temp °C: ”))
print(”In °F:”, (c * 9/5) + 32)

2. Text & String Operations
text = input(”Text: ”)
print(”Reversed:”, text[::-1])
print(”Vowels:”, sum(1 for ch in text if ch.lower()
in ”aeiou”))
print(”Masked:”, text[0] + ””(len(text)-2) + text[-1]
if len(text) ¿ 2 else text)

3. Decision Making
n = int(input(”Number: ”))
print(”Even” if n % 2 == 0 else ”Odd”)
s1, s2 = input(”Str1: ”), input(”Str2: ”)
print(”Equal” if s1 == s2 else ”Not equal”)

4. Repetition & Loops
print(”Sum 1 to n:”, sum(range(1, n+1)))

print(”Prime:”, all(n % i for i in range(2,
int(n**0.5)+1)) if n ¿ 1 else False)

5. Functions
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
print(”GCD:”, gcd(a, b))
print(”Radians:”, math.radians(float(input(”Degrees:
”))))
print(”Hello”, input(”Name: ”))

6. List & Array Manipulation
lst = list(map(int, input(”List: ”).split()))
lst.append(100)
print(”Sorted:”, sorted(lst))
print(”Evens:”, [x for x in lst if x % 2 == 0])

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 358



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

TABLE I: Core Python Problem Types for Novice Programmers

S.No. Category Overview Sample Exercises Key Concepts
1 Basic

Calculations
& Variables

Simple math operations
and storing values in
names

Swap two variables Variables, arithmetic oper-
ators, user input, conver-
sion

Temperature Converter
basic Calculator

2 Text & String
Operations

Manipulating and analyz-
ing text data

Reverse a string String slicing, concatena-
tion, methods, loops

Count Vowels
Mask sensitive info

3 Decision Making Writing code that chooses
different paths based on
conditions

Even-odd checker if/elif/else, Boolean logic,
comparison ops

Compare two strings
Range tester

4 Repetition &
Loops

Repeating actions until a
condition is met

Compute factorial for loops, while loops,
range(), iteration

Sum numbers 1-N
Prime tester

5 Reusable
Functions

Packaging logic into
callable blocks

Degrees↔radians converter def, parameters, return
values, modular design

GCD Calculator
Custom greeting

6 List & Array Ma-
nipulation

Working with ordered col-
lections

Sort a list 3*Lists, indexing, append-
ing, sorting, list methods

Filter mixed-type list
Find max value

7 Type Conversion
Exercises

Changing data from one
form to another

Decimal → binary converter int(), float(), str(), bin()

String → integer parser

print(”Max:”, max(lst))
7. Type Conversion

d = int(input(”Decimal: ”))
print(”Binary:”, bin(d))
print(”Parsed Int:”, int(input(”Number (as string):
”)))

Python Starter Pack: Essential Coding Chal-
lenges:

This section presents a selection of small ques-
tions, each reinforcing the basic Python concept.
These issues are chosen for their ability to clarity,
management, and to promote active coding and
logical thinking. The aim is to promote independent
thinking and face many diverse challenges without
revealing solutions to solve problems.

Let’s explore a short example and its code snip-
pet:

In-place variable swapping using Python’s tuple
unpacking
Input two values

a = input(”Enter value for A: ”)
b = input(”Enter value for B: ”)
print(f”Before Swapping: A = {a}, B = {b}”)
Swapping using tuple unpacking (no temp variable)
a, b = b, a

print(f”After Swapping: A = {a}, B = {b}”)

II. Concept practice: Variable assignment, Un-
derstanding Pythons tupelo Pack/editing.

Practised concepts: user input (input()), type
conversion (int()), conditionalinstructions (if-else),
modulo operator (%).

Let’s explore a short example and its code snip-
pet:

1. Variable Assignment
age = 25
name = ”ABC”
print(f”Assigned directly: age = {age}, name =
’{name}’”)

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 359



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

2. User Input
user name = input(”Enter your name: ”)
print(”Hello”, user name)
3. Type Conversion
age = int(input(”Enter your age: ”))
4. Conditionals (Adult or Minor)
if age ¿= 18:
print(”You are an Adult.”)
else:
print(”You are a Minor.”)
5. Modulo Operator (Even/Odd check)
num = int(input(”Enter a number to check even or
odd: ”))
if num % 2 == 0:

print(”Even”)
else:
print(”Odd”)

III. Concept practice: function definition, cut-
ting edge of strings, implicit understanding of
string immutability. The character ”Y” should
not be counted as a vowel.

Practical concepts: function definition, string
identification (loop), conditional instructions, string
methods (.lower(), in). The function must perform
the specified calculation and return the result.

Let’s explore a short example and its code snip-
pet:

Function Definition (from Table 4)
def count vowels(text):
vowels = ”aeiou”
vowel count = 0
for char in text: { Looping Through String }
if char.lower() in vowels: { Case-insensitive,
excluding ’y’ }
vowel count += 1 { Strings are immutable, count
in a new variable }

return vowel count { Return final count }
Main Code
user input = input(”Enter a string: ”)
result = count vowels(user input)
print(f”Total vowels (excluding ’Y/y’):”, result)

IV. Concept Practice: Functions, Parame-

ters, Conditionals, and Arithmetic Operators in
Python

Practical concepts: function definitions, some pa-
rameters, conditional statements (if-elif-else), arith-
metic operators.

Let’s explore a short example and its code snip-
pet:

Function Definition with Parameters def
calculate(a, b):
{ Conditional Statements }
if a ¿ b:
print(”a is greater than b”)
elif a ¡ b:
print(”b is greater than a”)
else:
print(”a and b are equal”)
{ Arithmetic Operations }
print(”Sum:”, a + b)
print(”Difference:”, a - b)
print(”Product:”, a * b)
if b != 0:
print(”Division:”, a / b)
print(”Remainder (Modulo):”, a % b)

else:
print(”Division and Modulo not possible (b is 0)”)
Main Code
x = int(input(”Enter first number (a): ”))
y = int(input(”Enter second number (b): ”))
calculate(x, y)

V. Concept Practice: Sorting with Control
Flow and Iteration in Python

Practice concepts: loops (or in between), con-
ditional statements (for basic cases such as 0),
iteration or recursive logic. If the string is ”ASC”,
the function must return a list sorted in ascending
order. For ”desc”, it returns in descending order.
And if ”none” you need to return the original list
without modifying it.

Let’s explore a short example and its code snip-
pet:

def sort list(order, input list):
{ Conditional logic to decide sorting }
if order.lower() == ”asc”: {asc for ascending}
return sorted(input list)

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 360



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

TABLE II: Practice Essentials – Variables, Input, Conversion, Conditionals, and Modulo in Python

S.No. Concept Description Example Code Snippet Output Example
2
1 Variable Assign-

ment
Assigning values to
variables using =

age = 25

name = ”Radha” age is now 25
name is ”Radha”

2 User Input Taking input from
users using input()

user name =

input(”Enter name: ”) If input is ”Alex”
→ user name = ”Alex”

3 Type Conversion Converting input
from string to integer
using int()

age = int(input(”Enter

age: ”)) If input is 18
→ age = 18

4 Conditionals Making decisions us-
ing if, else

if age ¿= 18:

print(”Adult”)
else:

print(”Minor”) Adult or Minor
based on input

5 Modulo Operator
(%)

Finding remainder to
check divisibility or
parity (even/odd)

if num % 2 == 0:

print(”Even”)
else:

print(”Odd”) If input is 7
→ Odd

elif order.lower() == ”desc”: { desc for descending
}
return sorted(input list, reverse=True)
elif order.lower() == ”none”: {none to preserve the
original list}
return input list
else:
return ”Invalid order type! Use ’asc’, ’desc’, or
’none’.”
Example usage

original = [5, 3, 9, 1, 7]
print(”Original List:”, original)
print(”Ascending Order:”, sort list(”asc”, original))
print(”Descending Order:”, sort list(”desc”,
original))
print(”No Sorting:”, sort list(”none”, original))

VI. Concept Practice : Temperature Con-
version with Functions, Lists, and Condi-
tional Statements in PythonPractical: concepts:

function definition, list operations (.sort() or
sorted()), conditional statements, string compar-
isons. The program must request the user a
temperature of degrees Celsius.

Let’s explore a short example and its code snip-
pet:

1. Function to count vowels in a string
def count vowels(text):
vowel count = 0
for char in text:
if char.lower() in ”aeiou”:
vowel count += 1
return vowel count
2. Function for basic calculator logic using
conditionals and arithmetic
def calculate(a, b):
if a ¿ b:
return a - b
else:
return a + b, a * b, a / b, a % b
3. Function to sort a list based on a given order

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 361



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

TABLE III: Key Practice Areas – Python Functions and Conditional String Operations

S.No. Concept Description Example Code Snippet Key Takeaways

1 Function Definition Define a reusable block of
code that accepts input and re-
turns a result.

def
count_vowels(text):
# logic here

Functions improve mod-
ularity and readability.

2 Looping Through a
String

Use a loop to iterate through
each character in a string.

for char in text: Enables character-level
operations on strings.

3 String Immutability Strings cannot be changed
after creation; instead, new
strings are built when modify-
ing.

Modify using slicing or con-
catenation, not direct assign-
ment.

Understanding
immutability avoids
runtime errors.

4 Conditional Instruc-
tions

Use if statements to check if a
character is a vowel.

if char in "aeiou": Logical checks help fil-
ter specific characters.

5 Excluding ’Y’ as
Vowel

Ensure the function does not
consider ’Y’ or ’y’ a vowel.

if char in "aeiou":
(do not include ’y’ in vowel
list)

Emphasizes precision in
conditional logic.

6 String Methods Use .lower() to normalize
case and in to check character
presence.

if char.lower() in
"aeiou":

.lower() simplifies
case-sensitive checks.

7 Return Value The function should return the
final count of vowels found.

return vowel_count return sends results
back to the caller.

TABLE IV: Practical Application – Python Functions and Logical Operations

S.No. Concept Explanation Illustrative Code Example
1 Function Definition Creating reusable code blocks that

perform specific tasks. d e f c a l c u l a t e ( ) :

2 Parameters Inputs passed into functions to make
them dynamic and flexible. d e f c a l c u l a t e ( a , b ) :

3 Conditional Statements Using if, elif, and else to control
logic flow based on conditions. i f a > b :

r e t u r n a
e l s e :

r e t u r n b

4 Arithmetic Operators Performing calculations using +, -, *,
/, %. r e t u r n a + b , a * b ,

a / b , a − b , a % b

def sort list(order, input list):
if order == ”asc”:
return sorted(input list)

elif order == ”desc”:
return sorted(input list, reverse=True)
else:
return input list { return as-is if ”none” }
4. Function to collect temperatures, sort, and

classify
def convert temperature():
temperatures = []
count = int(input(”How many temperatures do you
want to enter? ”))
for i in range(count):
temp = float(input(f”Enter temperature {i+1} in
Celsius: ”))
temperatures.append(temp)

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 362



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

TABLE V: Practical Application – Python Functions and Logical Operations

S.No. Concept Explanation Illustrative Code Example

1 Function Definition Creating reusable code blocks that
perform specific tasks.

def calculate():

2 Parameters Inputs passed into functions to make
them dynamic and flexible.

def calculate(a, b):

3 Conditional Statements Using if, elif, and else to control
logic flow based on conditions.

if a > b:
return a
else:
return b

4 Arithmetic Operators Performing calculations using +, -, *,
/, %.

return a + b, a * b, a /
b, a - b, a % b

order = input(”Sort order (asc/desc/none):
”).strip().lower()
if order == ”asc”:
temperatures.sort()
elif order == ”desc”:
temperatures.sort(reverse=True)
print(”Classification:”)
for temp in temperatures:
if temp ¡ 20:
print(f”{temp}°C - Cold”)
elif temp ¡ 30:
print(f”{temp}°C - Warm”)
else:
print(f”{temp}°C - Hot”)
def main():
while True:
print(”— Python Concept Programs —”)
print(”1. Count Vowels in a String”)
print(”2. Basic Calculator (Using Conditionals)”)
print(”3. Sort List (asc/desc/none)”)
print(”4. Temperature Handler (Sorting &
Classification)”)
print(”5. Exit”)
choice = input(”Enter your choice (1-5): ”)
if choice == ”1”:
text = input(”Enter a string: ”)
print(”Number of vowels:”, count vowels(text))
elif choice == ”2”:
a = float(input(”Enter first number: ”))
b = float(input(”Enter second number: ”))
result = calculate(a, b)
print(”Result:”, result)

elif choice == ”3”:
lst = input(”Enter list elements separated by space:
”).split()
lst = [int(x) for x in lst]
order = input(”Enter sort order (asc/desc/none):
”).strip().lower()
sorted list = sort list(order, lst
print(”Sorted List:”, sorted list)
elif choice == ”4”:
convert temperature()
elif choice == ”5”:
print(”Exiting Program. Goodbye!”)
break

else:
print(”Invalid choice. Please try again.”)
if name == ” main ”:
main()

VII. Concept Practice : Applying Arithmetic
and Formulas with User Input in Python

Practical concepts: user input, type conversion
(float), arithmetic operations, formula applications.
Table Form given below

Let’s explore a short example and its code
snippet: 1. User Input radius = float(input(”Enter
the radius of the circle: ”)) { Type Conversion
from string to float } 2. Arithmetic Operations
and Formula Applications Calculate the area
of the circle area = math.pi * radius * radius
Display the result print(f”The area of the
circle with radius {radius} is: {area}”) 3.
User Input for temperature conversion fahrenheit

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 363



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

TABLE VI: Function-Based List Sorting – ASC, DESC, or None in Python

S.No. Concept Description Example Techniques
1 Looping / Iteration Repeating operations over elements

in a sequence (list, string, etc.)
for item in list:, while,
list comprehensions

2 Conditional Statements Making decisions based on values
such as ”asc”, ”desc”, or ”none”

if, elif, else structures

3 Sorting Mechanisms Sorting lists based on conditions sorted(list), sorted(list,
reverse=True)

4 Preserving Original List Returning the list as-is when no
sorting is required

return original_list

5 Function Definition Wrapping the logic in a function
that accepts input and returns out-
put

def sort_list(order,
input_list):

6 Parameter Usage Accepting dynamic input values
such as order type and list to be
sorted

order: str, input_list:
list

7 Optional: Recursion An advanced method for iterating
through structures or decision trees
(if applicable)

(Not required for this example but
could be explored in variations)

= float(input(”Enter temperature in Fahrenheit:
”)) { Type Conversion from string to float } 4.
Formula Application for Celsius conversion celsius
= (fahrenheit - 32) * 5 / 9 Display the result
print(f”The temperature in Celsius is: {celsius}”)

VIII. Concept Practice – Filtering Integers from
a List Using

Functions and String Operations in Python
Practical- concepts: function definition, cutting edge
of strings, string

quet, string iteration. This function must return a
new list with only integers in its original order.

Let’s explore a short example and its code snip-
pet:

def filter integers(data):
2. String Checks
filtered list = []
3. String Iteration and
4. List Construction
for item in data:
if isinstance(item, int): { Check if the item is an
integer }
filtered list.append(item) { Add integer to the new
list }
return filtered list { 5. Return Statement }
Example usage

input data = [1, ’hello’, 3.5, 2, ’42’, 7, ’world’,

10] { Mixed list of integers and strings }
result = filter integers(input data) { Call the func-
tion }
print(”Filtered integers:”, result) { Output the result
}
Practical concepts: function definition, list identi-
fication, type check (isinstance()), list attachments.
Despite being small, each problem increases spe-
cific concepts and prepares learners with somewhat
complicated variations. It is a repetition of the
core problem type (e.g., string inversion, factor
calculation), but shows different limitations or pro-
posed approaches (e.g., using a compared to loop
or recursive versus iterative logic).

This will give you a deeper understanding and
expose you to the versatility of Python. It’s not
just about solving problems, but also about solving
many problems, integrating patterns, and building
a mental library of solutions. Therefore, the prac-
tice regime of beginners should include reviewing
concepts through various problem contexts and re-
searching alternative solutions to the same problem.

Refining Your Problem-Solving Approach: De-
veloping powerful programming knowledge means
more than just fighting exercises. A systematic
approach is required. Small, manageable compo-
nent problems create arithmetic thinking habits that
clearly implement solutions into pseudocode and
rigorously test your work, turning your challenges

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 364



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

TABLE VII: Function-Based Temperature Handling – A Concept Practice in Python

S.No. Concept Description Example Techniques
1 Function Definition Encapsulating logic into a reusable

code block for clarity and reuse
def convert_temperature():

2 List Operations Using .sort() or sorted() to organize
temperature values if needed

temperatures.sort(),
sorted(temperatures)

3 Conditional Statements Making decisions based on input
values or ranges (e.g., cold, warm,
hot)

if temp < 20:, elif temp <
30:, else:

4 String Comparisons Handling input types like ”asc”,
”desc” for sorting or interpreting
temperature conditions

if order == "asc":

5 User Input Collecting temperature value from
the user in degrees Celsius

temp = int(input("Enter
temperature in Celsius:
"))

6 Type Conversion Converting input string to inte-
ger/float for processing

int(), float()

into trustworthy, elegant code.
Tackling Complex Problems One Step at a

Time: The problem is a conscious process of
breaking up large, complex problems into small,
independent, manageable sub-problems. Each sub-
problem can be solved individually and combined
with the solutions to effectively tackle the larger
original challenges. This approach is the basis
of computer-aided thinking.The advantages of the
problem are numerous. It sharpens clarity by better
understanding the requirements of the problem and
helping you recognize potential edge cases in the
early stages. For beginners who find it difficult
to juggle syntax, logic, dataflow and exceptions at
once, decomposition serves as an important cogni-
tive help. Concentrating on small insulated pieces
simultaneously reduces the mental load and be-
comes overwhelming. This means that the learning
process is managed and motivated by progressive
victory. Supports time management by assessing

and prioritizing tasks more effectively. Addition-
ally, corruption of the problem increases the like-
lihood that marginal cases will be recognized and
planned from the start, thus facilitating thorough
troubleshooting.Simplification of complex problems
allows small tasks to be distributed among team
members, making moving of blocking tasks acces-
sible and collaborative. Each board can be given de-
tailed attention to improve the overall solution qual-
ity. For example, you can decompose the construc-
tion of simple computers in the implementation of

parsing inputs, precedence operators, and individual
arithmetic operations. Instead of expecting learners
to record implicitly, they should be presented as
a central metaskill that will ensure students are
gradually moved to complex programming tasks.

III. CONCLUSION:

True mastery of Python emerges not merely
from learning its syntax but from repeatedly ap-
plying those constructs to well-focused, bite-sized
problems. By tackling exercises that isolate one
or two core ideas—whether arithmetic, string ma-
nipulation, control flow, loops, data structures, or
simple functions—beginners translate abstract con-
cepts into concrete code, uncover gaps in their un-
derstanding, and develop the investigative mindset
and muscle memory essential for writing correct,
readable programs. A curriculum that places hands-
on, concept-driven practice at its heart—using the-
ory only as a launchpad for immediate applica-
tion—will best equip students to progress confi-
dently from fundamental skills to tackling more
sophisticated challenges.

IV. REFERENCES

Teaching Python Programming to Novices: Ad-
dressing Misconceptions and Creating a Develop-
ment Environment A thesis submitted to attain
the degree of DOCTOR OF SCIENCES of ETH
ZURICH (Dr. sc. ETH Zurich) presented by Tobias
Kohn Dipl. Math, ETH Zurich born on January

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 365



ISSN (Online):3048-5088

International Journal of Advancement and Innovation
in Technology and Research (IJAITR)

Volume 3, Issue 1, (Jan-Jun) 2025

31, 1982 citizen of Endingen (AG) accepted on
the recommendation of Prof. Dr. Juraj Hromkoviˇc,
examiner Prof. Dr. Bill Manaris, co-examiner Prof.
Dr. Thomas R. Gross, co-examiner Prof. Dr. Jürg
Gutknecht, co-examiner 2017 Identifying Learning
Challenges faced by Novice/Beginner Computer
Programming Students: An Action Research Ap-
proach Sarita Singh1 1 College of Professional
Studies, Northeastern University, USA

Fig. 1: impact of program decomposition in Pro-
gramming

Fig. 2: Structured Thinking in Programming

REFERENCES

[1] ACM & IEEE. (2021). Computing Curricula 2020
CC2020: Paradigms for global Computing Education.
ACM & IEEE.

[2] Detienne, F. (1990). Expert Programming Knowledge: A
Schema-based Approach. In Hoc, J., Green, T., Samurcay,
R., and Gilmore, D. (Eds.), Psychology of Programming
(pp. 206–222). Academic Press, London.

[3] Chernikova, O., Heitzmann, N., Stadler, M., Holzberger,
D., Seidel, T., & Fischer, F. (2020). Simulation-
based learning in higher education: A meta-analysis.
Review of Educational Research, 90(4), 499–541.
https://doi.org/10.3102/0034654320933544

[4] Aristeidou, M., Ferguson, R., Perryman, L. A., & Tegama,
N. (2021). The roles and value of citizen science: Percep-
tions of professional educators enrolled on a postgraduate
course. Citizen Science: Theory and Practice, 6(1), 1–14.
https://doi.org/10.5334/CSTP.421

[5] Dhawan, S. (2020). Online learning: A panacea
in the time of COVID-19 crisis. Journal of
Educational Technology Systems, 49(1), 5–22.
https://doi.org/10.1177/0047239520934018

[6] European Research Council. (2022, December 7). Young
people engaged for the planet [Video]. YouTube.
https://www.youtube.com/watch?v=QV3ZqvfZ0ow

[7] Kate, V., Bansal, C., Pancholi, C., Patidar, A., Patidar,
G., Kitukale, D. Vyanjak: Innovative Video Intercom and
Notification System for the Deaf Community.

[8] Goyal, K., & Kumar, S. (2021). Financial literacy:
A systematic review and bibliometric analysis. Inter-
national Journal of Consumer Studies, 45(1), 80–105.
https://doi.org/10.1111/IJCS.12605

National Symposium on Sustainable Applications for Future Environment (NSSAFE-2025) 366


	Introduction
	Literature Review:
	Conclusion:
	References
	References

