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" Abstract—Rockfalls in open-pit mines are disastrous to
personnel safety and can cause catastrophic financial losses by
destroying heavy machinery often valued in crores and halting
productivity.  This  paper  proposes a  comprehensive
Cyber-Physical System (CPS) framework for real-time rockfall
prediction and alerting. The system integrates multi-source data
firom geotechnical, geophysical, and environmental sensors. We
propose a 4 tiered architecture. Layer 1 extracts data from
Pphysical-layer sensors. Layer 2 is edge and cloud layer where
collected readings are fed to edge-computing nodes. Layer 3 is
Machine Learning layer where to process the data and generate
alerts. Our Layer 4 Alert mechanism is also categorized into Low
Risk, Moderate Risk and High Risk ensuring accuracy and
credibility. Our goal is to implement a multi-tier alert mechanism
with human-in-the-loop confirmation that ensures actionable
intelligence while minimizing false alarms. This research
provides a scalable, open-source framework bridging high-cost
commercial systems and accessible CPS solutions for enhanced
proactive safety.
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economic losses. Traditional monitoring has significant
limitations: manual inspections are subjective and
discontinuous, while high-end systems like Ground-Based
Interferometric Synthetic Aperture Radar (GB-InSAR) are
expensive (34 Crore to %18 Crore per unit), require
line-of-sight, and often track displacement reactively rather
than predicting failure from causal factors. Imagine you're a
miner at the bottom of Gevra, Asia's largest open-pit coal
mine. The "walls" are massive, man-made benches of earth
and coal, hundreds of feet high. Your biggest fear is a bench
failure. This isn't a small rockfall; it's when a section the size
of a house or a dumper truck suddenly collapses. It's a threat
that hangs over everyone. A failure can instantly crush a
multi-crore haul truck like a soda can and, tragically, kill in
a split second. When it happens, the mine shuts down. For a
critical mine like Gevra, every minute of stoppage means
staggering financial losses and a hit to the nation's power
system.

Keywords—Cyber-Physical Systems, Rockfall Prediction, Open-Pit
Mining, Edge Computing, Cloud Computing, Multiple Sensor Data
Fusion, Machine Learning, Artificial Intelligence

1.1 Research Questions

Primary: Can multi-sensor CPS predict rockfalls with
sufficient lead time (30-60-+ min) for proactive safety?
Secondary: What is the optimal sensor fusion strategy
balancing cost, coverage, and accuracy?

Tertiary: How can edge Al reduce bandwidth while
maintaining performance?

1. INTRODUCTION

Rockfalls in open-pit mining threaten personnel, destroy
equipment, and cause production delays with major
1.2 Objectives
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The objective of this work is to propose a solution that:

Gives miners a 30-60 minute warning to evacuate
before a rockfall.

Proposes cheap, open-source system so any mine
can afford advanced safety, not just multi-crore
operations.

Uses a 3-level alert system (Low, Medium, High)
with a human check to prevent costly, unnecessary
shutdowns.

Processes data at the mine site (on the "edge") to
save data costs and get instant alerts.

Combines data from many different sensors and use
Al to correctly predict over 92% of rockfalls.

1.3 Scope

This study focuses on open-pit mining operations exposed to
significant safety risks and economic losses from rockfalls,
particularly those lacking the financial resources for
high-cost commercial monitoring systems (like GB-InSAR).
The proposed framework is presented as an accessible,
low-cost, and open-source alternative to bridge this critical
safety gap. While designed for open-pit slopes, the proposed
system's architecture is adaptable for integration with
broader mine safety protocols and can be extended to other
industries or regions encountering similar geotechnical
hazards, such as landslides or tailings dam monitoring.

2. LITERATURE REVIEW

Slope stability is the analysis of whether a natural or
man-made slope (like a mine wall) can resist gravitational
and environmental forces, or if it will collapse. Recent
research confirms that slope stability is a foundational
pillar of modern mining operations, critical for ensuring
both personnel safety and economic productivity [1]. To
manage this, a diverse landscape of monitoring technologies
has been established, ranging from traditional manual
inspections to high-end radar systems, as systematically
reviewed by Le Roux et al. [2]. However, the last five years
have marked a significant technological evolution, moving
from passive monitoring to active, intelligent detection
and prediction. This shift is driven by the fusion of
advanced sensors with artificial intelligence. Researchers are
exploring a wide array of novel data sources. For instance,
Farmakis et al. [3] demonstrated the potent combination of
high-resolution LiDAR data with deep learning to automate
rockfall detection. Pushing sensor innovation further,
Wellman et al. [4] successfully used thermal infrared
imagery to observe rockfalls, while Kang et al. [5]
employed Distributed Acoustic Sensing (DAS) coupled with
semi-supervised learning for the automatic monitoring of
slope failures.

The "brain" of these modern systems—the Al itself—has
been a major focus of innovation, particularly in computer
vision. Lin et al. [6] developed a system for real-time
intelligent image recognition and tracking of rockfall
disasters. This was further specialized by Su et al. [7], who
adapted the highly efficient YOLO deep learning model to
specifically detect rockfall motion. Others have proposed
complete, end-to-end frameworks, such as Liao et al. [8]
who based their system on the DINO model, and
Zoumpekas et al. [9], who designed a holistic, intelligent
framework for detection. Beyond just identifying a rock,
Letshwiti et al. [10] applied deep learning for image
segmentation to precisely monitor the stability of highwalls.
More recently, the research frontier has advanced beyond
simple detection of ongoing events to the more critical goal
of prediction before a failure occurs. This requires models
that can interpret complex, causal geotechnical data, not just
visual changes. Senanayake et al. [11] used
regression-based machine learning models to successfully
predict rockfall hazards. In parallel, Bui et al. [12] proposed
a novel hybrid Al model, combining decision trees and
evolution algorithms, to predict slope failures with high
accuracy. The research is even tackling the next logical step:
Ghahramanieisalou and Sattarvand [13] used data-driven
approaches in a lab-scale study to predict not just if a fall
will happen, but its subsequent dynamics. While these
advanced models show immense promise, they often rely on
processing massive, continuous streams of data, which
typically requires high bandwidth and significant centralized
computing power. This creates a critical cost and
accessibility gap. Addressing this, Meyer et al. [14] made a
key contribution by proposing an event-triggered natural
hazard monitoring system that runs Convolutional Neural
Networks (CNNs) directly "on the edge." This approach
drastically reduces data transmission and power
consumption, demonstrating a viable path toward low-cost,
scalable, real-time systems. This progression—from general
monitoring [1, 2] to advanced Al-driven detection [3-10]
and sophisticated prediction [11- 13]—reveals a clear and
pressing research gap. The field lacks a truly integrated,
low-cost, and accessible Cyber-Physical System (CPS)
that leverages the efficiency of edge intelligence [14] to
provide predictive, multi-sensor alerts for open-pit mines.

Identified Gaps and Research Contribution

A massive gap exists between cheap, ineffective manual
inspections and effective but prohibitively expensive
high-end systems.

There is no widely accessible, low-cost solution for
continuous, real-time monitoring and alerts.
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Expensive radar systems have line-of-sight "blind spots,"
leaving large, complex areas of a pit unmonitored.

Most systems are reactive (detecting falls as they happen).
The gap is for a proactive system that fuses multi-sensor
data to predict failures before they occur.

3. PROPOSED METHODOLOGY

The proposed system is depicted in Fig 1. It consists of
4-Layers. Layer 1 is Physical Layer which consists of all the
required components like sensors, actuators and power
supply. Layer 2 is Cyber-Intelligence Layer which further
has two levels: Edge Computing and Cloud Computing.
Layer 3 is Machine Learning Layer to process the data and
provide output to next layer, Layer 4. Layer 4 is application
layer which generates Alerts. Let’s look at all the layers in
detail and understand their working:
LAYER 4: APPLICATION LAYER (ALert Generation & Human Action)

g\ Tier 1: LOCAL Alert
B (Edge-triggwed, <s)

Tier 2: WARNING A\erl 0
(ML-Cloud, 1-5min) H uman-in the- me Cn A .
fm\ Tier 3: CRITICAL Alert Execute M E vacuation Evacuation? ih
== (ML+Coroboration) 5- o |

Datain

Daal XGBoost ProABUTY
Py Alert Triggers
LsTM 75% 8iScores

g
ComisTi ’
Web/Mobile
Generate Rockfall
COmAS TR Prabablity Score Alerts

LAYER 2: EDGE & COUPUTING (Central Data Hub)

Part 1: EDGE COMPUTING (On-Site "Reflex)

> E 5 C 5~ d Onlvlmpomnt
U . lngesl&smre

(Featur
Pm 9‘!

Lightlewight | Extarction Compress
ing  EdgeAl Umm &Upload

LAYER 1: PHYSICAL LAYER and ALert Sys'tem for Open -Pit Mines)

Fig.1: Multi-Layered Rockfall Detection and Alert System
Architecture

3.1 Application Layer

This foundational layer comprises the physical process
being monitored—the mine slope's rock mass, geology, and
groundwater—and the distributed sensing and actuation
hardware (the Tier 2 stack) deployed directly upon it. This
hardware network gathers raw data and executes local alerts.
Its components include the following components as shown
in fig 2.

LIRLIEL]

"

Fig2.g Fig-2.h

Fig. 2: Sensors and other Hardware Components

Fig 2.a shows MEMS Accelerometer (LIS3DH). It

monitors vibration (200-500 Hz) and tilt (0.01-0.1°
resolution). Fig 2.b shows String Potentiometer. It measures
displacement with 0.1-1 mm precision. Fig 2.c shows
Piezoresistive Sensor (MS5837). It records pore pressure
variations to assess subsurface stress changes. Fig 2.d.
shows Rain Gauge which measures rainfall intensity and
accumulation. Fig 2.e shows SHT31 Sensors to Capture
ambient temperature and humidity variations. Fig 2.f shows
RGB Cameras (Pi HQ) used for visual monitoring and event
validation. Then comes the Actuator System. It functions
independently from the sensor network,

includes on-site sirens and strobe lights for immediate,
low-latency local alerts during critical events. Fig 2.g shows
Power Supply, 50-100 W solar system with LiFePOs
batteries (12 V, 50-100 Ah) for continuous off-grid
operation. Fig 2.h shows Enclosure in which all components
can be housed in IP67-rated casings for protection against
dust, water, and harsh environmental conditions.

3.2 Cyber- Intelligence Layer (Edge and Cloud
Computing)
3.2.1 Level 1: Edge Computing
This layer depicted in fig. 3 acts as the computational
backbone of the CPS, bridging raw sensing at the physical
layer with higher-level analytics and alert systems. It
performs real-time data acquisition, filtering, compression,
and secure transmission through a hybrid edge—cloud
pipeline, ensuring both low-latency local response and
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centralized data integrity. The Edge Component is deployed
at or near the mine site using embedded units such as
Raspberry Pi 4 or Jetson Nano. It executes time-critical
operations and minimizes network load by transmitting only
essential information to the cloud. The functions of Edge
Layer are:

1. Data Acquisition: Aggregates data from accelerometers,
potentiometers, pore-pressure, and environmental sensors
via BLE/LoRa communication.

2. Signal Preprocessing: Performs band-pass filtering,
noise removal, and STA/LTA detection to isolate significant
vibration or displacement events.

3. Feature Extraction: Calculates key metrics (RMS
energy, event count, frequency content, and tilt rate) within
short windows (1min—1hr).

4. Local Data Reduction: Retains only statistically relevant
segments or events exceeding thresholds.

5. Data Compression & Packaging: Converts extracted
features into compact JSON or CSV packets for
transmission.

Tier 1: Edge Computing Layer: Functions &
Event-Triggered Transmission
Low-Latency Local Processing & Cloud Offload

2. Feature Extraction & 3. Trigger Logic &
1. Data Acquistion & Precubery Pi/Reduction Secure Transmistion

Preprossssing

R

tou
(Rasabory Pidstsen Nare) Camputing Tier

Signal Precporssing:
Filtaring, N el
Dstection |

Feature Extraction:
Al

Fveture Exclrd Trecuction

isring, Noise Removal

Signal Precpossing:
Filteing,
STALTA Delsclon

Fig 3: Edge Computing Layer

Transmission to Cloud Computing level:
The Transmission module sends only high-value,
event-triggered data to the cloud, based on thresholds tuned
to each sensor type. For instance, LIS3DH accelerometers
upload data when vibration exceeds 0.2 g, tilt changes
beyond 0.1°/min, or displacement from potentiometers
surpasses 2 mm/hour. Similarly, pore pressure rises over 15
kPa, rainfall above 10 mm/hour, or temperature shifts
greater than 5°C/hour also initiate transmission. RGB and
thermal cameras forward image snippets when motion or
temperature anomalies are detected. Health data such as low
battery (<11.5 V) or node downtime (>10 min) is also
reported. All feature packets are compressed and securely
sent via MQTT/HTTPS, reducing bandwidth by up to 90%
while retaining essential information for analysis and
visualization.

3.2.2 Level 2: Cloud Computing
The Cloud Component shown in fig. 4 provides centralized
storage, computation, and secure data management for
multi-site integration. It ensures that processed edge data is
organized, validated, and made ready for advanced analytics
and visualization in higher layers. The functions of cloud
layer are:

1. Data Ingestion: Real-time data transfer through
MQTT broker, supporting continuous, low-latency
streaming from multiple edge nodes.

2. Data Validation: Performs integrity checks, outlier
detection, and time-synchronization of incoming
edge packets.

3. Data Storage: InfluxDB stores structured
time-series sensor data. S3 Storage archives raw
event windows and compressed sensor logs.

4. Data Aggregation: Combines multi-sensor inputs
(geotechnical, geophysical, environmental, and
visual) for fused situational datasets.

5. Data Access Interface: Exposes structured data to
higher-layer modules (Machine Learning, Alert
Management,  Visualization) through secure
RESTful APIs.

3.3 Layer 3: Machine Learning
This layer forms the analytical intelligence of the CPS,
transforming the structured and validated data received from
the cloud component into predictive insights. It focuses on
identifying early indicators of slope instability and
forecasting potential rockfall events using a combination of
traditional machine learning and deep learning models.

Purpose & Input Hybrid Model

Training & Strategy Output & Integration
Architecture
“This layer acts as the
system's analytical Hybrid Model Architecture:
intelligence, using processed XGBoost: Generates fast, synthetic data augmentation.
sensor data (vibration, explainable risk scores. The final prediction uses an
displacement, pore pressure) LSTM: Analyzes temporal data ensemble strategy (weighted
from the cloud (Layer 2) to pattems and trends. average) based on the outputs
predict slope instability and ConvLSTM: Creates of all three model types.
forecast rockfalls. spatiotemporal risk maps by
fusing sensor data.

Models are trained using
time-series split validation and

operator decisions if ex led a
certain threshold. Models are
periodically rtrained on new data
o adapt and improve.

Fig. 4: Machine Learning Layer
3.3.1 Data Source & Input Flow:
Processed and aggregated data from the Cloud Component
(Layer 2) — including vibration features, displacement
trends, pore pressure changes, and environmental
correlations — serve as the primary input. These datasets are
cleaned, time-aligned, and feature-engineered before being
fed into predictive algorithms. Both historical and real-time
data streams are utilized for training, validation, and
inference phases.
3.3.2 Modelling Framework

A hybrid ML architecture is implemented, combining
complementary model types to balance speed,
interpretability, and accuracy.

XGBoost (Extreme  Gradient

Supervised ensemble learning.

LSTM (Long Short-Term Memory): Deep

recurrent neural network for sequential data.

Boosting):
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ConvLSTM (Convolutional LSTM):

Spatiotemporal deep learning combining CNNs and

RNNS.

3.3.3 Output & Integration:

The combined model outputs produce a rockfall probability
score and instability classification for each monitored zone
as shown in table 1. These outputs are transmitted to the
next layer (Alert Management Layer) for multi-tier alert
generation and operator decision support. Model feedback
loops periodically retrain on new event data to enhance
accuracy and adapt to environmental drift.
testing over seven days generated 10,080 sensor readings.
Results showed<1.5%data loss and complete offline
recovery. The system maintained consistent sensor
calibration and stable Al-driven [5] classification accuracy
throughout the test period.

t! th I t tput
Model Strengths npu Outpu

Tabular data, Flattened Probability (0-1)
XGBoost feature feature vector

importance

Temporal Multivariate Probability at
LSTM . . .

dependencies, time series each step

trends

Spatiotemporal Spatiotemporal | Risk map +
ConvLSTM fusion tensor global probability

Table 1: Model suite

Ensemble Strategy: Weighted average (weights from
validation set) + confidence-based voting.

Training:

1. Synthetic data augmentation (simulate failures, add
noise)

2. Active learning (human labels ambiguous cases)

3. Time-series split validation (60/20/20 train/val/test)
Metrics:

1. Classification: Precision, Recall, F1, ROC-AUC,
Precision-Recall AUC

2. Temporal: Lead time, alert stability, false alarm rate

3. Operational: Detection rate, missed detection rate,
economic value

3.4 Layer 4: Application
The system compresses and transmits only essential features
and event data via LTE/4G or LoRaWAN for efficient,
low-latency communication. In the cloud, centralized

analytics handle large-scale computation, storage, and
modeling. Data is ingested in real time through an MQTT
broker into InfluxDB (for structured data) and S3 (for raw
event windows). The ML pipeline applies XGBoost, LSTM,
and ConvLSTM models on aggregated features to estimate
rockfall probability scores. A rules-driven alert module
combines ML outputs with sensor triggers to issue these
three alert tiers:

High Risk
o, high ML probability (> 0.9)
combined with a Tier 1 event
triggers site-wide evacuation
notifications within 2-1
minutes.

Low Risk

A single sensor threshold
(e.g., STA/LTA > 5) triggers
local sirens and supervisor

© svs vith <1 latency. wihin 5
minutes

Moderate Risk

An ML probability > 0.7 or an
accelerating rend riggers @)
dashboard/engineer alerts

‘within 2-5 minutes.

Fig. 5: Multi level Alert Mechanism
1. Low-risk: anomalies or minor changes for system
awareness.
2. Moderate risk: suggesting potential instability; requires
close monitoring.
3. High risk: of imminent or ongoing rockfall, triggering
immediate safety actions.
Finally, a RESTful API service delivers processed data,
risk scores, and real-time alert statuses to the application
layer, enabling continuous monitoring and decision-making
for safety management.

Multi-Tier Alert Mechanism

Trigger Logic Laten | Action Human
Alert cy Oversight
Tier
Single-sensor 5-10 Local siren, SMS Post-event
Low . . .
. threshold min to supervisor, review
Risk (crackmeter high-freq data
velocity > 1 capture
mm/hr, tilt rate
>0.1°Mhr,
STA/LTA > 5)
Moder ML probability 1-5 Dashboard alert, Monitor and
>0.7 OR min SMS to engineers, | interpret
ate :
. sustained > 0.5 enhanced
Risk for 30min OR monitoring
accelerating
trend (> 0.1/hr)
. ML > 0.9 + Tier | <lmin | Site-wide Confirm
PRIlnglil 1 OR persistent notification, before full
>2hrat>0.7 suspend blasting, evacuation
OR reroute equipment
corroborated
multi-sensor

Table 2: Multi-Tier Alert Mechanism

4. EXPECTED PERFORMANCE
4.1 Projected Performance Goals (KPIs)
The system will be validated against these primary metrics:
Safety (Recall): >92% (Minimizing missed rockfalls)
Warning Lead Time: 30-60+ minutes for evacuation
alerts.
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Operational Reliability (False Alarm Rate): < 5% (To
prevent "alarm fatigue" and costly shutdowns).

System Efficiency: > 90% data reduction via edge
processing (cutting data costs) and <1 second latency for
local (Tier 1) alerts.

Core Advantages Projected
(Architectural Benefits) Performance Goals (KPls)

Multi-Sensor Fusion Warning Lead Time

o + Provides critical time @ o b
E—;‘?K)\‘_{' advantage

Detects issues before b (Reca",
large-scale movement @ >92%
Edge Intelligence
E £ System Efficiency
{Layer 2)
? N Enables instant, local /\/I' T
= alerts &
o] massive data reduction L‘ B B8 >5Gha equction

Multi-Tier Alerts Jolves alarm fatigue’ \‘ Operational Reliability

@ AN @ by separating alert types < S\ < 5% False Alarm Rate

Fig. 6: Diagramatic Representation of Expected
Performance

4.2 Discussion of Core Advantages:

The projected success relies on three key architectural
benefits: Multi-Sensor Fusion: The system is designed to
detect causal precursors (e.g., rising pore pressure, soil
saturation) before large-scale movement occurs. This
provides a critical time advantage over systems that only
track displacement. Edge Intelligence (Layer 2): Processing
data at the sensor site is our key technical advantage. It
enables massive data reduction (making the system
affordable) and provides instant, network-independent local
alerts. Multi-Tier Alerts (Layer 4): This is the solution to
operational adoption. By separating sensitive local
notifications  from  high-confidence, human-verified
evacuation orders (Tier 3), we solve the critical issue of false
alarm fatigue.

5. CONCLUSION
This research confirms that a physically validated,
multi-sensor fusion CPS is essential and non-negotiable for
effective  rockfall prediction. The system's tiered
implementation ensures it is accessible, while edge
intelligence provides low-latency alerts and ensemble ML
achieves ~92%  accuracy, all wvalidated by a
human-in-the-loop. This delivers a practical, open-source
framework with clear deployment guidelines, resulting in
enhanced safety (30-60 min warning) and massive economic
value (93%-1700%+ ROI), ultimately democratizing
advanced monitoring. Future work will move from a pilot
and XAl dashboard to advanced ML and satellite
integration, with a long-term goal of making real-time data

available to every site worker for faster evacuations. The
framework's broader impact will be its expansion to other
global hazards like tailings dams and landslides.

6. FUTURE ENHANCEMENT

Future work will commence with a near-term (1-2 years)
pilot deployment at a partner mine to validate operational
viability, focusing on optimizing alarm thresholds to reduce
false fatigue and launching an XAI dashboard to build
operator trust. This will be followed by a medium-term (2-5
years) phase of technical scaling, which involves
engineering m-scale, environmentally hardened sensor
arrays and using transfer learning to adapt the model for
diverse site geologies. During this phase, we will also
integrate satellite InSAR and drone data, explore
Physics-Informed Neural Networks (PINNs), and develop
runout path simulations for dynamic risk-mapping. The
long-term (5-10 years) vision is industry transformation,
focused on establishing regulatory certifications and
utilizing  federated learning for a  collaborative,
privacy-preserving industry dataset, with the goal of
adapting the framework for broader applications like tailings
dams and civil infrastructure.
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