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1 Abstract—Rockfalls in open-pit mines are disastrous to 
personnel safety and can cause catastrophic financial losses by 
destroying heavy machinery often valued in crores and halting 
productivity. This paper proposes a comprehensive 
Cyber-Physical System (CPS) framework for real-time rockfall 
prediction and alerting. The system integrates multi-source data 
from geotechnical, geophysical, and environmental sensors. We 
propose a 4 tiered architecture. Layer 1 extracts data from 
physical-layer sensors. Layer 2 is edge and cloud layer where 
collected readings are fed to edge-computing nodes. Layer 3 is 
Machine Learning layer where to process the data and generate 
alerts. Our Layer 4 Alert mechanism is also categorized into Low 
Risk, Moderate Risk and High Risk ensuring accuracy and 
credibility. Our goal is to implement a multi-tier alert mechanism 
with human-in-the-loop confirmation that ensures actionable 
intelligence while minimizing false alarms. This research 
provides a scalable, open-source framework bridging high-cost 
commercial systems and accessible CPS solutions for enhanced 
proactive safety. 
 

Keywords—Cyber-Physical Systems, Rockfall Prediction, Open-Pit 
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1. INTRODUCTION 
Rockfalls in open-pit mining threaten personnel, destroy 

equipment, and cause production delays with major 

1 

economic losses. Traditional monitoring has significant 
limitations: manual inspections are subjective and 
discontinuous, while high-end systems like Ground-Based 
Interferometric Synthetic Aperture Radar (GB-InSAR) are 
expensive (₹4 Crore to ₹18 Crore per unit), require 
line-of-sight, and often track displacement reactively rather 
than predicting failure from causal factors. Imagine you're a 
miner at the bottom of Gevra, Asia's largest open-pit coal 
mine. The "walls" are massive, man-made benches of earth 
and coal, hundreds of feet high. Your biggest fear is a bench 
failure. This isn't a small rockfall; it's when a section the size 
of a house or a dumper truck suddenly collapses. It's a threat 
that hangs over everyone. A failure can instantly crush a 
multi-crore haul truck like a soda can and, tragically, kill in 
a split second. When it happens, the mine shuts down. For a 
critical mine like Gevra, every minute of stoppage means 
staggering financial losses and a hit to the nation's power 
system. 
 
                            1.1 Research Questions 
Primary: Can multi-sensor CPS predict rockfalls with 
sufficient lead time (30-60+ min) for proactive safety?​
Secondary: What is the optimal sensor fusion strategy 
balancing cost, coverage, and accuracy?​
Tertiary: How can edge AI reduce bandwidth while 
maintaining performance? 
 

1.2 Objectives 
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The objective of this work is to propose a solution that:  
​​ Gives miners a 30-60 minute warning to evacuate 

before a rockfall. 
​​ Proposes cheap, open-source system so any mine 

can afford advanced safety, not just multi-crore 
operations. 

​​ Uses a 3-level alert system (Low, Medium, High) 
with a human check to prevent costly, unnecessary 
shutdowns. 

​​ Processes data at the mine site (on the "edge") to 
save data costs and get instant alerts. 

​​ Combines data from many different sensors and use 
AI to correctly predict over 92% of rockfalls. 
 

1.3 Scope 
This study focuses on open-pit mining operations exposed to 
significant safety risks and economic losses from rockfalls, 
particularly those lacking the financial resources for 
high-cost commercial monitoring systems (like GB-InSAR). 
The proposed framework is presented as an accessible, 
low-cost, and open-source alternative to bridge this critical 
safety gap. While designed for open-pit slopes, the proposed 
system's architecture is adaptable for integration with 
broader mine safety protocols and can be extended to other 
industries or regions encountering similar geotechnical 
hazards, such as landslides or tailings dam monitoring. 

2. LITERATURE REVIEW 
Slope stability is the analysis of whether a natural or 
man-made slope (like a mine wall) can resist gravitational 
and environmental forces, or if it will collapse. Recent 
research confirms that slope stability is a foundational 
pillar of modern mining operations, critical for ensuring 
both personnel safety and economic productivity [1]. To 
manage this, a diverse landscape of monitoring technologies 
has been established, ranging from traditional manual 
inspections to high-end radar systems, as systematically 
reviewed by Le Roux et al. [2]. However, the last five years 
have marked a significant technological evolution, moving 
from passive monitoring to active, intelligent detection 
and prediction. This shift is driven by the fusion of 
advanced sensors with artificial intelligence. Researchers are 
exploring a wide array of novel data sources. For instance, 
Farmakis et al. [3] demonstrated the potent combination of 
high-resolution LiDAR data with deep learning to automate 
rockfall detection. Pushing sensor innovation further, 
Wellman et al. [4] successfully used thermal infrared 
imagery to observe rockfalls, while Kang et al. [5] 
employed Distributed Acoustic Sensing (DAS) coupled with 
semi-supervised learning for the automatic monitoring of 
slope failures. 

The "brain" of these modern systems—the AI itself—has 
been a major focus of innovation, particularly in computer 
vision. Lin et al. [6] developed a system for real-time 
intelligent image recognition and tracking of rockfall 
disasters. This was further specialized by Su et al. [7], who 
adapted the highly efficient YOLO deep learning model to 
specifically detect rockfall motion. Others have proposed 
complete, end-to-end frameworks, such as Liao et al. [8] 
who based their system on the DINO model, and 
Zoumpekas et al. [9], who designed a holistic, intelligent 
framework for detection. Beyond just identifying a rock, 
Letshwiti et al. [10] applied deep learning for image 
segmentation to precisely monitor the stability of highwalls. 
More recently, the research frontier has advanced beyond 
simple detection of ongoing events to the more critical goal 
of prediction before a failure occurs. This requires models 
that can interpret complex, causal geotechnical data, not just 
visual changes. Senanayake et al. [11] used 
regression-based machine learning models to successfully 
predict rockfall hazards. In parallel, Bui et al. [12] proposed 
a novel hybrid AI model, combining decision trees and 
evolution algorithms, to predict slope failures with high 
accuracy. The research is even tackling the next logical step: 
Ghahramanieisalou and Sattarvand [13] used data-driven 
approaches in a lab-scale study to predict not just if a fall 
will happen, but its subsequent dynamics. While these 
advanced models show immense promise, they often rely on 
processing massive, continuous streams of data, which 
typically requires high bandwidth and significant centralized 
computing power. This creates a critical cost and 
accessibility gap. Addressing this, Meyer et al. [14] made a 
key contribution by proposing an event-triggered natural 
hazard monitoring system that runs Convolutional Neural 
Networks (CNNs) directly "on the edge." This approach 
drastically reduces data transmission and power 
consumption, demonstrating a viable path toward low-cost, 
scalable, real-time systems. This progression—from general 
monitoring [1, 2] to advanced AI-driven detection [3-10] 
and sophisticated prediction [11- 13]—reveals a clear and 
pressing research gap. The field lacks a truly integrated, 
low-cost, and accessible Cyber-Physical System (CPS) 
that leverages the efficiency of edge intelligence [14] to 
provide predictive, multi-sensor alerts for open-pit mines. 

 
 Identified Gaps and Research Contribution 

​​ A massive gap exists between cheap, ineffective manual 
inspections and effective but prohibitively expensive 
high-end systems. 

​​ There is no widely accessible, low-cost solution for 
continuous, real-time monitoring and alerts. 
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​​ Expensive radar systems have line-of-sight "blind spots," 
leaving large, complex areas of a pit unmonitored. 

​​ Most systems are reactive (detecting falls as they happen). 
The gap is for a proactive system that fuses multi-sensor 
data to predict failures before they occur. 

3. PROPOSED METHODOLOGY  
The proposed system is depicted in Fig 1. It consists of 
4-Layers. Layer 1 is Physical Layer which consists of all the 
required components like sensors, actuators and power 
supply. Layer 2 is Cyber-Intelligence Layer which further 
has two levels: Edge Computing and Cloud Computing. 
Layer 3 is Machine Learning Layer to process the data and 
provide output to next layer, Layer 4. Layer 4 is application 
layer which generates Alerts. Let’s look at all the layers in 
detail and understand their working: 

 
Fig.1: Multi-Layered Rockfall Detection and Alert System 
Architecture 
 

3.1 Application Layer 
This foundational layer comprises the physical process 
being monitored—the mine slope's rock mass, geology, and 
groundwater—and the distributed sensing and actuation 
hardware (the Tier 2 stack) deployed directly upon it. This 
hardware network gathers raw data and executes local alerts. 
Its components include the following components as shown 
in fig 2.  

 
Fig. 2: Sensors and other Hardware Components 

 
Fig 2.a shows MEMS Accelerometer (LIS3DH). It​
monitors vibration (200–500 Hz) and tilt (0.01–0.1° 
resolution). Fig 2.b shows String Potentiometer. It measures 
displacement with 0.1–1 mm precision. Fig 2.c shows 
Piezoresistive Sensor (MS5837). It records pore pressure 
variations to assess subsurface stress changes. Fig 2.d. 
shows Rain Gauge which measures rainfall intensity and 
accumulation. Fig 2.e shows SHT31 Sensors to Capture 
ambient temperature and humidity variations. Fig 2.f shows 
RGB Cameras (Pi HQ) used for visual monitoring and event 
validation. Then comes the Actuator System. It functions 
independently from the sensor network, ​
includes on-site sirens and strobe lights for immediate, 
low-latency local alerts during critical events. Fig 2.g shows 
Power Supply, 50–100 W solar system with LiFePO₄ 
batteries (12 V, 50–100 Ah) for continuous off-grid 
operation. Fig 2.h shows Enclosure in which all components 
can be housed in IP67-rated casings for protection against 
dust, water, and harsh environmental conditions.  
 

3.2 Cyber- Intelligence Layer (Edge and Cloud 
Computing) 

3.2.1 Level 1: Edge Computing 
This layer depicted in fig. 3 acts as the computational 
backbone of the CPS, bridging raw sensing at the physical 
layer with higher-level analytics and alert systems. It 
performs real-time data acquisition, filtering, compression, 
and secure transmission through a hybrid edge–cloud 
pipeline, ensuring both low-latency local response and 
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centralized data integrity. The Edge Component is deployed 
at or near the mine site using embedded units such as 
Raspberry Pi 4 or Jetson Nano. It executes time-critical 
operations and minimizes network load by transmitting only 
essential information to the cloud. The functions of Edge  
Layer are: 
1. Data Acquisition: Aggregates data from accelerometers, 
potentiometers, pore-pressure, and environmental sensors 
via BLE/LoRa communication.​
2. Signal Preprocessing: Performs band-pass filtering, 
noise removal, and STA/LTA detection to isolate significant 
vibration or displacement events.​
3. Feature Extraction: Calculates key metrics (RMS 
energy, event count, frequency content, and tilt rate) within 
short windows (1min–1hr).​
4. Local Data Reduction: Retains only statistically relevant 
segments or events exceeding thresholds.​
5. Data Compression & Packaging: Converts extracted 
features into compact JSON or CSV packets for 
transmission. 
 

 
Fig 3: Edge Computing Layer 

Transmission to Cloud Computing level: 
The Transmission module sends only high-value, 
event-triggered data to the cloud, based on thresholds tuned 
to each sensor type. For instance, LIS3DH accelerometers 
upload data when vibration exceeds 0.2 g, tilt changes 
beyond 0.1°/min, or displacement from potentiometers 
surpasses 2 mm/hour. Similarly, pore pressure rises over 15 
kPa, rainfall above 10 mm/hour, or temperature shifts 
greater than 5°C/hour also initiate transmission. RGB and 
thermal cameras forward image snippets when motion or 
temperature anomalies are detected. Health data such as low 
battery (<11.5 V) or node downtime (>10 min) is also 
reported. All feature packets are compressed and securely 
sent via MQTT/HTTPS, reducing bandwidth by up to 90% 
while retaining essential information for analysis and 
visualization. 

 

       3.2.2 Level 2: Cloud Computing 
The Cloud Component shown in fig. 4 provides centralized 
storage, computation, and secure data management for 
multi-site integration. It ensures that processed edge data is 
organized, validated, and made ready for advanced analytics 
and visualization in higher layers. The functions of cloud 
layer are: 

1.​ Data Ingestion: Real-time data transfer through 
MQTT broker, supporting continuous, low-latency 
streaming from multiple edge nodes. 

2.​ Data Validation: Performs integrity checks, outlier 
detection, and time-synchronization of incoming 
edge packets.  

3.​ Data Storage: InfluxDB stores structured 
time-series sensor data. S3 Storage archives raw 
event windows and compressed sensor logs. 

4.​ Data Aggregation: Combines multi-sensor inputs 
(geotechnical, geophysical, environmental, and 
visual) for fused situational datasets. 

5.​ Data Access Interface: Exposes structured data to 
higher-layer modules (Machine Learning, Alert 
Management, Visualization) through secure 
RESTful APIs.  

       3.3 Layer 3: Machine Learning 
This layer forms the analytical intelligence of the CPS, 
transforming the structured and validated data received from 
the cloud component into predictive insights. It focuses on 
identifying early indicators of slope instability and 
forecasting potential rockfall events using a combination of 
traditional machine learning and deep learning models. 

 
Fig. 4: Machine Learning Layer 

3.3.1 Data Source & Input Flow: 
Processed and aggregated data from the Cloud Component 
(Layer 2) — including vibration features, displacement 
trends, pore pressure changes, and environmental 
correlations — serve as the primary input. These datasets are 
cleaned, time-aligned, and feature-engineered before being 
fed into predictive algorithms. Both historical and real-time 
data streams are utilized for training, validation, and 
inference phases. 

3.3.2 Modelling Framework 
A hybrid ML architecture is implemented, combining 
complementary model types to balance speed, 
interpretability, and accuracy.  

​​ XGBoost (Extreme Gradient Boosting): 
Supervised ensemble learning. 

​​ LSTM (Long Short-Term Memory): Deep 
recurrent neural network for sequential data. 
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​​ ConvLSTM (Convolutional LSTM): 
Spatiotemporal deep learning combining CNNs and 
RNNs. 

3.3.3 Output & Integration: 
The combined model outputs produce a rockfall probability 
score and instability classification for each monitored zone 
as shown in table 1. These outputs are transmitted to the 
next layer (Alert Management Layer) for multi-tier alert 
generation and operator decision support. Model feedback 
loops periodically retrain on new event data to enhance 
accuracy and adapt to environmental drift.​
 testing over seven days generated 10,080 sensor readings. 
Results showed < 1.5 % data loss and complete offline 
recovery. The system maintained consistent sensor 
calibration and stable AI-driven [5] classification accuracy 
throughout the test period. 
 

Model Strengths Input Output 

XGBoost Tabular data, 
feature 
importance 

Flattened 
feature vector 

Probability (0-1) 

LSTM Temporal 
dependencies, 
trends 

Multivariate 
time series 

Probability at 
each step 

ConvLSTM Spatiotemporal 
fusion 

Spatiotemporal 
tensor 

Risk map + 
global probability 

Table 1: Model suite  

Ensemble Strategy: Weighted average (weights from 
validation set) + confidence-based voting.​
Training:​
1. Synthetic data augmentation (simulate failures, add 
noise)​
2. Active learning (human labels ambiguous cases)​
3. Time-series split validation (60/20/20 train/val/test)​
Metrics:​
1. Classification: Precision, Recall, F1, ROC-AUC, 
Precision-Recall AUC​
2. Temporal: Lead time, alert stability, false alarm rate​
3. Operational: Detection rate, missed detection rate, 
economic value 

3.4 Layer 4: Application 
The system compresses and transmits only essential features 
and event data via LTE/4G or LoRaWAN for efficient, 
low-latency communication. In the cloud, centralized 

analytics handle large-scale computation, storage, and 
modeling. Data is ingested in real time through an MQTT 
broker into InfluxDB (for structured data) and S3 (for raw 
event windows). The ML pipeline applies XGBoost, LSTM, 
and ConvLSTM models on aggregated features to estimate 
rockfall probability scores. A rules-driven alert module 
combines ML outputs with sensor triggers to issue these 
three alert tiers: 

 
Fig. 5: Multi level Alert Mechanism 

1. Low-risk: anomalies or minor changes for system 
awareness.​
2. Moderate risk: suggesting potential instability; requires 
close monitoring.​
3. High risk: of imminent or ongoing rockfall, triggering 
immediate safety actions.​
Finally, a RESTful API service delivers processed data, 
risk scores, and real-time alert statuses to the application 
layer, enabling continuous monitoring and decision-making 
for safety management. 

Multi-Tier Alert Mechanism 
Alert 
Tier 

Trigger Logic Laten
cy 

Action Human 
Oversight 

Low 
Risk 

Single-sensor 
threshold 
(crackmeter 
velocity > 1 
mm/hr, tilt rate 
> 0.1°/hr, 
STA/LTA > 5) 

5-10 
min 

Local siren, SMS 
to supervisor, 
high-freq data 
capture 

Post-event 
review 

Moder
ate 
Risk 

ML probability 
> 0.7 OR 
sustained > 0.5 
for 30min OR 
accelerating 
trend (> 0.1/hr) 

1-5 
min 

Dashboard alert, 
SMS to engineers, 
enhanced 
monitoring 

Monitor and 
interpret 

High 
Risk 

ML > 0.9 + Tier 
1 OR persistent 
> 2hr at > 0.7 
OR 
corroborated 
multi-sensor 

<1min Site-wide 
notification, 
suspend blasting, 
reroute equipment 

Confirm 
before full 
evacuation 

Table 2: Multi-Tier Alert Mechanism 

4.​ EXPECTED PERFORMANCE 
4.1 Projected Performance Goals (KPIs) 

The system will be validated against these primary metrics: 
​​ Safety (Recall): >92% (Minimizing missed rockfalls) 
​​ Warning Lead Time: 30-60+ minutes for evacuation 

alerts. 
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​​ Operational Reliability (False Alarm Rate): < 5% (To 
prevent "alarm fatigue" and costly shutdowns). 

​​ System Efficiency: > 90% data reduction via edge 
processing (cutting data costs) and <1 second latency for 
local (Tier 1) alerts. 

 

 
Fig. 6: Diagramatic Representation of Expected 

Performance 
​

4.2 Discussion of Core Advantages: 
The projected success relies on three key architectural 
benefits: Multi-Sensor Fusion: The system is designed to 
detect causal precursors (e.g., rising pore pressure, soil 
saturation) before large-scale movement occurs. This 
provides a critical time advantage over systems that only 
track displacement. Edge Intelligence (Layer 2): Processing 
data at the sensor site is our key technical advantage. It 
enables massive data reduction (making the system 
affordable) and provides instant, network-independent local 
alerts. Multi-Tier Alerts (Layer 4): This is the solution to 
operational adoption. By separating sensitive local 
notifications from high-confidence, human-verified 
evacuation orders (Tier 3), we solve the critical issue of false 
alarm fatigue. 
 

5. CONCLUSION 
This research confirms that a physically validated, 
multi-sensor fusion CPS is essential and non-negotiable for 
effective rockfall prediction. The system's tiered 
implementation ensures it is accessible, while edge 
intelligence provides low-latency alerts and ensemble ML 
achieves ~92% accuracy, all validated by a 
human-in-the-loop. This delivers a practical, open-source 
framework with clear deployment guidelines, resulting in 
enhanced safety (30-60 min warning) and massive economic 
value (93%-1700%+ ROI), ultimately democratizing 
advanced monitoring. Future work will move from a pilot 
and XAI dashboard to advanced ML and satellite 
integration, with a long-term goal of making real-time data 

available to every site worker for faster evacuations. The 
framework's broader impact will be its expansion to other 
global hazards like tailings dams and landslides. 
 

6. FUTURE ENHANCEMENT 
Future work will commence with a near-term (1-2 years) 
pilot deployment at a partner mine to validate operational 
viability, focusing on optimizing alarm thresholds to reduce 
false fatigue and launching an XAI dashboard to build 
operator trust. This will be followed by a medium-term (2-5 
years) phase of technical scaling, which involves 
engineering m-scale, environmentally hardened sensor 
arrays and using transfer learning to adapt the model for 
diverse site geologies. During this phase, we will also 
integrate satellite InSAR and drone data, explore 
Physics-Informed Neural Networks (PINNs), and develop 
runout path simulations for dynamic risk-mapping. The 
long-term (5-10 years) vision is industry transformation, 
focused on establishing regulatory certifications and 
utilizing federated learning for a collaborative, 
privacy-preserving industry dataset, with the goal of 
adapting the framework for broader applications like tailings 
dams and civil infrastructure. 
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